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Abstract – In this paper an ECG QRS detection algorithm is 
described, based on continuous wavelet transform. It involves a 
significant improvement of the method with zero-crossing of the 
wavelet coefficients for edge localization in the QRS complexes. 
The characteristic points in QRS complexes are computed 
trough different scale wavelet decompositions. The QRS 
identification uses feature vectors composed of modulus maxima 
values, computed using continuous wavelet transform with the 
first derivative of the Gaussian function.  The QRS classification 
method is based on K-nearest neighbors algorithm (K-NN). 
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I. INTRODUCTION 

Although the electrocardiogram (ECG) is one of the oldest 
diagnostic tools in cardiology, its clinical significance remains 
undoubted. The development of the portable ECG recorders 
(Holters) gives the possibility for more accurate diagnosis of 
cardiac diseases at early stage. Also, manual analysis for more 
than 24h long ECG recordings is hard and impractical. For 
these reasons, researches in the field of automatic ECG 
analysis are still challenging.   

 

 
 

Fig. 1. Normal ECG  
 

The ECG is a record of the electrical activity of the heart 
muscle. The ECG signal is considered to be a non-stationery 
random process with outstanding cyclic recurrence. 
Significant ECG-information is found in the amplitude and 
time intervals between defined characteristic points. The 
following points shown on Fig. 1, determine the standard 
waves in human ECG: P-wave, QRS complex, T-wave and 

sometimes U-wave. The portion of ECG between two 
neighbor R points forms a full cardiac cycle. 

Boundary determination and classification of ECG waves 
and complexes (ECG delineation) is the main entry for 
automatic ECG analysis. The most significant approach in 
ECG analysis is to implement a probabilistic model in order to 
deal with non-stationery properties of the signal. Recently, the 
research it these probabilistic models is concentrated mainly 
in Hidden Markov Model (HMM) and Hidden Semi-Markov 
Model (HSMM). Very appealing results have been achieved 
by combining HMM and HSMM with wavelet transforms [7], 
which can be used as features of the signal [4], or can be used 
for edge localization and characterization [1].       

The QRS complexes are the most distinct part in the ECG. 
On the other hand, T and P-waves detection without any prior 
knowledge can be difficult due to their low sharpness and 
possible baseline drift. This is why QRS detection is used as a 
starting point in wide range of methods and algorithms for 
automatic ECG analysis. In addition, the information about 
shape and time of occurrence of the QRS complexes (cardiac 
cycle duration) can provide enough information for automatic 
diagnosis of some cardiac diseases such as sinus tachycardia, 
sinus bradycardia, sinus arrhythmia etc [10]. 

According to mentioned concept a QRS detector is present 
in this paper. As result from QRS detection is clustered ECG 
signal into cardiac cycles, which can be used to detect some 
cardiac diseases and to make an entry for full ECG delineation 
(determination of onset and offset of each standard ECG 
component). 

The remainder of this paper is structured as follows. In 
section II the different morphologies of the QRS complexes 
are discussed and grouped according to definite rules. Section 
III continues the work with detection of the characteristic 
points and boundaries of the QRS complexes, using wavelet 
transforms. Also, in this section, the features for QRS 
complexes identification are selected. In Section IV a QRS 
identifier is described, based on K-nearest neighborhood 
method. Section V shows experimental results and brief 
discussion.    

II. QRS MORPHOLOGY 

The proposed QRS detector is intended to detect only 
normal QRS complexes. Any abnormal QRS morphology 
should not be marked by the algorithm thus the abnormality 
can be detected in the next stage of ECG analysis, using the 
information from separated full cardiac cycles.  

The normal QRS complexes can be very different in their 
morphology (number of waves, dominant wave, etc). 

1Yuliyan S. Velchev is with the Faculty of Telecommunications,
Technical University of Sofia, Address: 8, Kliment Ohridski St.
Sofia-1000, BULGARIA, E-mail: julian_velchev@abv.bg 

 2Ognian L. Boumbarov is with the Faculty of 
Telecommunications, Technical University of Sofia, Address: 8,
Kliment Ohridski St. Sofia-1000, BULGARIA, E-mail: olb@tu-
sofia.bg 

Any positive deflected wave is labeled as R, if the wave is 
dominant or r if its size is relatively small. Any negative wave 
that appears prior to R wave is labeled as Q or q, respectively. 
Any negative wave coming after R wave is labeled S or s 
according to the abovementioned rule. If there is more than 
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one wave from a given type, the remaining waves are labeled 
with “prime” (‘), additionally. For example QRS, qRS, qR, 
Qr, rSRS’, etc.  

 Obviously, it is hard to build universal QRS identifier. So, 
the QRS complexes are grouped in several classes according 
to following rules: number of waves that form the QRS complex 
and dominant wave (waves) in the QRS complex. 

For each of these classes a set of separate QRS identifiers is 
built and trained with training set constructed from annotated 
ECG signals with the same QRS morphology.  

III. QRS BOUNDARY DETECTION  

Most of the characteristic points in the QRS complexes can 
be associated with local extrema of the ECG in given time 
interval. Many methods for QRS detection are based on signal 
derivatives [2]. A significant drawback is the insufficient 
robustness when high frequency noise is present.   

Wavelet transforms (WT) are widely used in automatic 
ECG analysis [1,3,5,6]. As can be seen below, they are closely 
related to signal derivatives, but the transform is less sensitive 
to high frequency noise.   

The wavelet analysis of the signal s(t) means 
decomposition of the signal using translated and scaled single 
prototype wavelet function ψ. This function has unit energy 
and zero average. The translation b and scaling a of the 
wavelet function is expressed by (3.1). 
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The WT of the signal s(t) is defined by: 
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For a fixed scale a the WT can be rewritten as convolution: 
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Where ( ) ( )a ab bψ ψ= −  
 
In terms of edge localization of the components forming the 

QRS complexes, the chosen wavelet function is the first 

derivative of a single Gaussian function:
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and zero position of the center of the peak. 
In this case the wavelet transform  can be 

expressed as proportional to smoothed first derivative of the 
signal s(t) by scaled version of Gaussian function 
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The onset and offset of a rising or falling edge in particular 

wave in ECG is derived from the zero-crossing of W1s(a,b) 
around each modulus maxima (MM) [8]. The MM is at any 
point b0, where ( ) ( )0Ws b Ws b< when b belongs to either a 

right or the left neighborhood of b0, and ( ) ( )0Ws b Ws b≤ when 
b belongs to the other side of the neighborhood of b0. 

The scale of the wavelet transform a gives the resolution of 
the edges, which can be detected. The small values of a give a 
better time resolution, and thus the onset and offset of the 
wave can be precisely determined, but the transform becomes 
sensitive to noise. So, achieving the good time resolution for 
QRS boundary detection with good noise robustness, a 
combination of wavelet transforms from different scales is 
applied.  

The algorithm uses wavelet transforms for boundary 
localization starting from higher scale and précising the 
currently determined point by lowering the scale before next 
iteration.   

As can be seen from Fig. 2, the boundaries of the QRS 
complexes can’t be detected precisely or even can be missed. 
The method with zero-crossing of W1s(a,b) is usually applied 
to detect the boundaries of “subclasses” in the ECG, formed 
by some parts of neighboring standard “waves”, such as the 
part between points Poff and R, R and Ton etc (Fig. 1). After 
“subclasses” classification, the boundaries of the standard 
waves are determined by rule, according to given ECG 
morphology. 

The proposed algorithm for QRS boundary detection is 
based on zero-crossing of W1s(a,b), applied not only on 
original ECG signal, but also on its appropriate wavelet 
decomposition and composition (Fig. 2). 

     
 

 
 

Fig. 2. QRS characteristic points detection: original ECG (thick 
line), wavelet transformed ECG with Coiflet-5, level 3 (thin line), 

detected characteristic points (dashed vertical lines) 
 

After determination of the internal characteristic points and 
successful QRS identification, the ECG signal is decomposed 
with WT to 8 levels of decomposition. At first iteration stage, 
the signal is composed back only from 3rd level. The 
approximated onset and offset of the QRS complexes are 
found by applying the same method with zero-crossing of 
W1s(a,b) on composed signal, before and after first and last 
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modulus maxima in QRS complexes. Iteratively the zero-
crossing method is applied on ECG composed from higher 
levels, thus précising the current onset and offset, until 
maximum accuracy for QRS boundaries detection is achieved. 

IV. QRS IDENTIFICATION 

As mentioned above, the QRS complexes occupy higher 
frequency regions in ECG spectrum. Thus, the unique 
combination from modulus maxima values for each edge in 
the QRS complexes gives well enough discriminative 
information in order to make a robust identification. 

 

 
 
Fig.3. Features extraction from ECG signal with rS morphology of 
the QRS complexes: ECG (solid line), wavelet coefficients from 

wavelet transform with first derivative of Gaussian function at scale 
a = 2 (thin line), modulus maxima positions at scale a = 2 (dashed 

vertical lines) 
 

The modulus maxima in determined from wavelet 
transform with first derivative of the Gaussian function at 
scale a = 2. This value is chosen to achieve good description 
for given edge, along with acceptable noise robustness (Fig. 
3). 

The feature vectors M are built from consecutive 
normalized modulus maxima values mi with size according to 
particular QRS morphology (4.1). 
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Fig. 4 shows the feature space diagram for ECG record with 

rS morphology of the QRS complexes by combination of the 
features - m1 ,  m2  and m3 . 

The identifier for QRS complexes uses K-nearest neighbor 
algorithm (K-NN). It is based on closest training examples 
from the training set in the feature space. An object is 
classified by a majority vote of its neighbors, with the object 
being assigned to the class most common amongst its K 
nearest neighbors. In this particular case (binary 
classification), K is chosen to be an odd number (K= 3). 

 
 

 
 

Fig. 4. Feature space diagram for the ECG signal from Fig. 3. 
Features: Feature 1 - m1, Feature 2 – m2, Feature 3 – m3 
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V. EXPERIMENTAL RESULTS AND PERFORMANCE 
EVALUATION 

The performance of the described algorithm for QRS 
complexes detection is evaluated according to (5.1) and (5.2) 
and the results are shown in Table I.  
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     (5.1) 
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Where Se denotes sensitivity, +P denotes positive 

predictivity, TP is number of true positive detections, FN is 
number of false negatives and FP is number of false positives. 

For performance evaluation the following ECG databases 
are used: MIT-BIH Normal Sinus Rhythm Database, MIT-
BIH Long-Term ECG Database, QT Database and others. 

The analyzed signals have been resampled to standard 
sampling rate of 256 Hz. Each signal is 60 s long and consists 
about 60-100 QRS complexes. 
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TABLE I 
PERFORMANCE EVALUATION OF THE QRS DETECTION 

ECG Signal Se, % +P, % 
16265 sig 0 96.9 100 
16265 sig 1 100 100 
16272 sig 0 98.4 100 
16272 sig 1 93.7 95.2 
16273 sig 0 98.8 100 
16273 sig 1 98.9 100 

 
The classifier is made under Statistical Pattern Recognition 

Toolbox for Matlab [9]. 
The performance of the described algorithm for detection of 

QRS characteristic points has been evaluated using mean 
value m and standard deviation σ of the absolute error. The 
reference for absolute error is expert annotated QRS 
characteristic points of real ECG signals. 

TABLE II 
EVALUATION OF THE ABSOLUTE ERROR OF QRS 

CHARACTERISTIC POINTS DETECTION 

ECG 
Signal 

QRS on 
m, σ 
(ms) 

QRS off 
m, σ 
(ms) 

Q 
m, σ 
(ms) 

R 
m, σ 
(ms) 

S 
m, σ 
(ms) 

16265 
sig 0 

3.5,  
3.2 

3.0, 
8.8 

-0.2,  
1.8 

0.8, 
1.9 

0.5, 
5.8 

16265 
sig 1 

2.6, 
12.7 

-0.9, 
2.3 

0.4, 
2.0 

0.1, 
1.6 

0.2, 
2.3 

16272 
sig 0 

-1.2, 
8,8 

0.5, 
4.6 

-1.2, 
8,8 

0.5, 
1.3 

-1.5, 
2.1 

16272 
sig 1 

-0.8, 
5.3 

0.5, 
4.9 

-0.8, 
5.3 

0.1, 
0.6 

0.1, 
1.1 

16273 
sig 0 

2.6, 
2.5 

-0.4, 
7.5 

0.3, 
2.9 

0.8, 
1.6 

-0.4, 
7.5 

16273 
sig 1 

-2.3, 
6.6 

-2.1, 
4.1 

1.5, 
2.9 

-1.4, 
2.3 

-2.1, 
4.1 

 
Table II shows the experimental results for several signals 

from MIT-BIH Normal Sinus Rhythm Database with different 
QRS morphologies (qR, rSRS’, Rs, rS). As can be seen, the 
mean value and standard deviation of the absolute error are 
comparable with the sampling interval for the analyzed ECG 
signals.  

VI. CONCLUSION 

In this paper a robust QRS detector have been present. 
Detection of the characteristic points in the QRS complexes is 
based on wavelet transform with first derivative of the 
Gaussian function. The onset and offset of the QRS 
complexes are determined with the same algorithm, but 
applied on wavelet composed signal from different scales, 

using Coiflet-5 as prototype function. This prototype function 
is chosen because the transformation uses digital filters with 
phase response linearity considerably better than other 
wavelets. 

The QRS identifier employs K-nearest neighborhood 
method for QRS complex identification. Its features are 
normalized consecutive modulus maxima values, determined 
with wavelet transform with first derivative of Gaussian 
function at scale a = 2, thus the detector is insensitive to 
baseline drift of the signal. 

The further analysis of the ECG is planned to be at full 
cardiac cycle level and finally to make detection of the 
remaining waves (T-wave, P-wave and U-wave). 
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