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Abstract – In this paper we are proposing a temperature-
dependent small-signal model of microwave transistors. It 
consists of an empirical small signal model based on a device 
equivalent circuit and a prior knowledge artificial neural 
network.  This model is more efficient and more accurate then an 
earlier proposed hybrid empirical-neural that include 
dependence on the ambient temperature. The proposed models 
has been developed for a pHEMT device and the obtained 
modeling results are contrasted to the reference values and to the 
values obtained by the earlier proposed hybrid model. 
Comparison of the modeling results prove advantages of the 
model proposed in the paper over the earlier proposed hybrid 
model. 
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I. INTRODUCTION 

Small-signal and noise modeling of low noise microwave 
transistors require special care in the computer-aided design 
of active circuits used in modern wireless systems. Extensive 
work has been carried out in the field of signal and noise 
modeling of these devices. Their physical models are too 
complex and require many input technological parameters, 
therefore the empirical models, mostly based on equivalent 
circuits are often used, [1]. Transistor small-signal 
characteristics are temperature dependent, but most of the 
existing transistor small-signal models are valid only for a 
specific ambient temperature. Therefore, for each given 
temperature point, it is necessary to extract the elements of the 
model. Extraction is basically an optimization process that can 
be time-consuming. Furthermore, the measured values of S-
parameters for a given temperature point are requested for the 
extraction, which could take much efforts and time, since the 
temperature dependent measurements require special 
equipment and procedures. 

In order to overcome the mentioned problems, in the 
earlier work, we have proposed the procedure for prediction 
of scattering (S-) parameters of microwave MESFETs and 
HEMTs for various device ambient temperatures, [2] and [3]. 
That model is a kind of hybrid empirical-neural models. An 
artificial neural network (ANN) is trained to predict 
temperature dependence of elements of the device equivalent 
circuit (ECP – Equivalent Circuit Parameters). Values of S-
parameters are calculated within a microwave simulator for 
the ECP predicted by an ANN for a given temperature. ANNs 
have been chosen as a modeling tool since they have the 
ability to learn from the presented data, and therefore they are 

especially interesting for problems not fully mathematically 
described. It should be noted that they fit non-linear 
dependencies better than polynomials. There are many papers 
referring results of applications of the neural networks in the 
microwave area, [2]-[10].  

The earlier proposed hybrid model has two potentional 
drawbacks: time-consuming extraction of ECPs required for 
collecting data for ANN training and modeling errors due to 
insufficiently accurate extraction of ECPs. 

Here, we are proposing a new hybrid empirical-neural 
model based on empirical equivalent circuit and a prior 
knowledge input (PKI) ANN, in order to overcome the 
mentioned drawbacks. The model and its development are 
described in the paper. An example of modeling the specific 
device is provided as well. In order to prove advantages of the 
model the obtained results are contrasted to the reference 
(measured) values and values obtained by using the earlier 
proposed hybrid model.  

II. ARTIFICIAL NEURAL NETWORKS 

A standard multilayer perceptron (MLP) artificial neural 
network is shown in Fig. 1, [4]. This network consists of an 
input layer (layer 0), an output layer (layer NL), as well as 
several hidden layers.  

 

 
Fig. 1. MLP artificial neural network 

Input data vectors are presented to the input layer and fed 
through the network that then yields the output vector. The l-
th layer output is: 
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where and  are outputs of l-th and (l-1)-th layer, 
respectively,  is a weight matrix between (l-1)-th and l-th 
layer and  is a bias matrix between (l-1)-th and l-th layer. 
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Function F is an activation function of each neuron and, in 
our case, is linear for input and output layer and sigmoid for 
hidden layers. The sigmoid function is: 

)1/(1)( ueuF −+=     (2) 

The neural network “learns” relationship among sets of 
input-output data (training sets) that are characteristics of the 
device under consideration during an optimization process, 
called the ANN training. The most common training 
algorithms are based on backpropagation algorithm, [6]. The 
backpropagation training algorithm can be described shortly 
as follows. First, input data vectors are presented to the input 
neurons and output vectors are computed. These output 
vectors are compared with desired values and errors are 
computed. Error derivatives are then calculated and summed 
up for each weight and bias until whole training set has been 
presented to the network. These error derivatives are used to 
update the weights and biases for neurons in the model. The 
training process proceeds until errors are lower than 
prescribed values or until maximum number of epochs (epoch 
is the whole training set processing) is reached. Once trained, 
the network provides fast response for all vectors from the 
input space without any additional change of its structure or 
its parameters. Furthermore, it provides correct response for 
the input values completely different from training ones, i.e. it 
is said that a trained ANN has a capability of generalization. 

III. HYBRID EMPIRICAL-NEURAL  
SMALL SIGNAL MODEL OF FETS/HEMTS 

In this paper we are considering a standard empirical model 
of microwave FET/HEMT transistors based on an equivalent 
circuit modification. A schematic of a packaged FET/HEMT 
equivalent circuit is shown in Fig.2.  

 

 
Fig.2. MESFET / HEMT package equivalent circuit 

 
The intrinsic circuit (denoted by a dashed line) which is 

common for most of the transistor models is embedded in a 
network representing device parasitics. 

The equivalent circuit parameters (ECP) are extracted 
from the measured values of the device scattering (S-) 

parameters. Since the model is valid only for one ambient 
temperature at which the S-parameters used in the extraction 
processes were measured. For any other temperature from the 
temperature range it is necessary to repeat measurements at 
that temperature and extract ECP values corresponding to that 
temperature. In order to avoid repeating of these procedures 
for any other temperature, and to include the dependence on 
temperature into the model, a hybrid empirical-neural model 
was proposed in [2]. The principle is shown in Fig.3. 

 

 
 

Fig.3. Hybrid empirical-neural model 
 
For the purpose of the ECP determination versus 

temperature it has been proposed to add to the model an MLP 
neural network with one hidden layer. It has one neuron in the 
input layer corresponding to the ambient temperature (T), 
while the number of the neurons in the output layer 
corresponds to the number of temperature dependent ECP (let 
this number be denoted as N). The network is trained using 
extracted ECP values for certain number of operating 
temperatures. After the training is done, ECP for any 
temperature from the operating temperature range are 
determined by simple finding neural network response. 

IV. HYBRID PKI EMPIRICAL-NEURAL MODEL 

In order to increase modeling efficiency further, a new 
approach is proposed. Instead of temperature dependent ECP, 
in the proposed model ECP are assumed to be constant having 
the values that correspond to a single temperature (here we 
have chosen 20°C). The temperature dependence of S-
parameters in introduced by an ANN trained to predict values 
of S-parameters for given temperature and frequency. The 
ANN is a PKI (Prior Knowledge Input) ANN that has 
additional knowledge at its inputs, [4]. In this case the prior 
knowledge is represented by the values of S-parameters 
obtained by the empirical model for T=20°C, Fig.4. Targets 
for the ANN training process are measured values of S-
parameters for each temperature-frequency pair chosen for the 
training purposes.  

Number of hidden layers (mostly one or two) and a 
number of neurons in the hidden layer(s) are not known a 
priori. Too many hidden neurons require more CPU time and 
can result in network over-learning and too few neurons may 
result in network under-learning. During the network training, 
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neural networks with different number of hidden neurons are 
trained and validated. After the validation process, a network 
that gives the best prediction results is chosen as the noise 
model for the device.  

 

 
Fig.4 Hybrid PKI empirical-neural model 

  
The proposed model is implemented in a microwave 

circuit simulator as follows: The first step is extraction of the 
ECP for the reference temperature (here 20°C) in the 
microwave simulator. It is done before the ANN training. The 
next step of implementation is done after the ANN was 
trained. It is performed within ANN training environment by 
generating mathematical expressions corresponding to the 
chosen ANN. Further, these expressions are put into VAR 
(Variable and Equation) block on the device schematic in the 
circuit simulator. Inputs of that VAR block are temperature 
frequency and values of S-parameters obtained by the 
empirical model for that frequency. Outputs of the VAR block 
are the final values of the S-parameters of the considered 
device. In that way prediction of S-parameters at any 
temperature and frequency from the device operating ranges is 
enabled, while the number of the necessary ECP extractions is 
reduced.  

V. NUMERICAL RESULTS 

The proposed method has been applied to a packaged 
microwave HEMT, type NE20283, from NEC. Measured 
values of S-parameters over the temperature range from 
 –40°C to 60°C (20°C step) were used for the development of 
the model. These data had been obtained earlier at the 
University of Palermo, Italy [11].  

First, the ECP of small-signal model were extracted from 
the available measured data for the temperature T=20°C. 
Then, the values of the S-parameters are simulated in the  
(6-18) GHz frequency range, with a 0.2GHz step and an 
appropriate training set was formed. After the ANN training 
process, a network with two hidden layers consisting of five 
and two neurons, respectively, was chosen and implemented 
into the microwave simulator ADS, [12]. 

As an illustration, in Fig.5 and Fig 6, temperature 
dependences of magnitudes of  and  parameters, 
respectively, are given. The measured (reference) values are 
represented by symbols and values obtained by the first hybrid 

model by dashed lines. Solid lines represent values obtained 
by the proposed model hybrid PKI model. One can observe 
that values obtained by both of the hybrid models are very 
close one to each other and the both are very close to the 
reference values. 

11S 21S

 
Fig.5 Magnitude of  parameter 11S

 

 
Fig.6 Magnitude of  parameter 21S

VI. CONCLUSION 

During the development of the proposed hybrid PKI 
empirical neural model extraction of ECP is done only once, 
therefore it is less time consuming than the previously 
proposed hybrid model.  

Moreover, in the previously proposed hybrid model, the 
ANN is trained using the extracted values of ECP, and 
therefore if extraction was not done with a sufficient accuracy 
it will result in a degradation of the accuracy of the model. 
But, since the ANN in the proposed model is trained using 
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measured values of S-parameters the model is less sensitive to 
the accuracy of ECP extraction than the hybrid model.  

The both advantages over the hybrid model, increasing of 
the modeling efficiency and more accurate modeling, make 
the proposed model to be a convenient solution for the 
temperature dependent small-signal modeling of microwave 
FETs/HEMTs. 

Implemented in a microwave simulator, the proposed 
model can be used a user-defined library element representing 
the considered device. It has the temperature as the input and 
can be used for prediction of the S-parameter in the whole 
temperature range without changes in its structure and 
avoiding need for additional measured data acquiring and 
optimisation procedures. 
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