

SLA Monitoring System of QoS Parameters to Network
Performance Metrics Mapping

Aleksandar Tsenov1 and Todor Georgiev2

Abstract – Service-level-agreement (SLA) monitoring measu-
res network Quality-of-Service (QoS) parameters to evaluate
whether the service performance complies with the SLAs. It is
becoming increasingly important for both Internet service pro-
viders (ISPs) and their customers. However, the rapid expansion
of the Internet makes SLA monitoring a challenging task. As an
efficient method to reduce both complexity and overheads for
QoS measurements, sampling techniques have been used in SLA
monitoring systems. In this work, using an efficient sampling
strategy, which makes the measurements less intrusive and more
efficient, a network performance monitoring software model is
introduced, which monitors such QoS parameters as packet
delay, packet loss and jitter for SLA monitoring and verification.

Keywords – Service-level-agreement (SLA), Quality-of-Service
(QoS), SLA monitoring

I. INTRODUCTION

Internet Service Providers (ISPs) now offer service level
agreements (SLAs) routinely to their customers. Management
needs contractual guarantees that business objectives are met,
and end-users demand assurance that their critical network
applications and services are available when needed. The
availability of SLAs and a means to validate them gives
management the confidence to move ahead. The wide
adoption of the E-business model has made it essential that
service-providers deliver on SLAs in a quantitative and
qualitative manner. This has driven the service-providers to
seek consistent testing and measurement methods that make
real sense of customer network performance.

An SLA is defined by the International Telecommunica-
tions Union (ITU) as “a negotiated agreement between a
customer and the service provider on levels of service charac-
teristics and the associated set of metrics. The content of
SLAs varies depending on the service offering and includes
the attributes required for the negotiated agreement” [1]. The
Internet Engineering Task Force (IETF) defines SLAs in a si-
milar way [2]. Figure 1 shows the main features of the SLAs.

Generally speaking, a good SLA should include these three
key aspects:

Service level objectives: encompass Quality-of-Service
(QoS) parameters or class of service provided, service
availability and reliability, authentication issues, SLA expiry
date, and so on.

Service measuring components: specify the way of

measuring service quality and other parameters used to assess
whether the service complies with the SLA.

Financial compensation components: include billing
options, penalties for breaking the contract, and so forth.

Fig. 1. Structure of service-level-agreements

II. RESEARCH MOTIVATION AND CONTRIBUTION

SLA monitoring is about collecting statistical metrics about
network performance to evaluate whether the provider comp-
lies with the level of QoS that the customer expects [3]. The-
refore, accurate measurement and estimation of network per-
formance becomes a key challenge in SLA monitoring. How-
ever, the implementation of measurement becomes increa-
singly difficult and complex due to the rapid expansion of the
Internet. Traditional measurement tools, such as “ping”, can-
not satisfy the measurement requirements nowadays. More-
over, the dramatic increase in the speed of wide area back-
bones presents obstacles to complete statistics collection. The
enormous amount of measurement data may significantly
increase the cost and resource usage [4].

In order to solve these problems, sampling techniques are
employed in SLA monitoring systems to reduce the quantity
of control data and resources required to process it, and finally
to reduce the measurement complexity and cost. Systematic
sampling and random sampling are two widely used methods
in existing monitoring systems, but both of them have severe
limitations. Stratified random sampling can achieve higher
estimation accuracy, but its high complexity may compromise
its advantages.

The aim of this research, which has been funded through
the research contract “BY-TH 105/2005”, is to develop an
efficient sampling strategy to make the measurement less
intrusive and more efficient. Then a network performance
monitoring software, which monitors such QoS parameters as
packet delay, packet loss and jitter for SLA monitoring and
verification, and which uses the proposed sampling strategy,
needs to be designed. These objectives have been fully
achieved. Firstly, a theoretical analysis of the performance of
different sampling techniques is made [5], [6]. Secondly, a
novel adaptive sampling strategy is proposed. Finally, QoS
monitoring software model is proposed.

1Aleksandar Tsenov is with Telecom Department at Technical
University of Sofia, “Kliment Ohridsky” Blvd 8, 1756 Sofia,
Bulgaria, E-mail: akz@tu-sofia.bg

2Todor Georgiev is with the TELELINK EAD, Business Park,
Building 13, Sofia E-mail: tgeorgiev@telelink.bg

36

III. QOS METRICS REVIEW

A. Main Usages of Internet Measurements

As described in [5], the main usages of Internet
measurements are Internet topology measurement, workload
measurement, performance monitoring and routing
measurement.

- Topology measurement: collects information on the net-
work connectivity and graphical locations of network devices.
With the rapid development of Internet, it becomes a challen-
ge to track and visualise the complex Internet topology [5].

- Workload measurement: focuses on the collection of
information on the resource usage of routers or switches and
the link utilisation [5], [6].

- Performance measurement: is used by network users or
researchers in analysing traffic behaviour on specific paths or
the performance (e.g., packet delay, jitter, packet loss) associ-
ated with individual ISPs. A recent development in the
industry is the monitoring of SLAs [5].

- Routing measurement: measures the dynamics of routing
protocols and routing updates [6].

All of the mentioned above measurements can be perfor-
med in two ways – passive and active measurements.

The IETF’s IPPM has developed series of standards called
Requests For Comments (RFC) on network performance mea-
surements. The standard metrics for measurements are defined
in RFC 2330, which are listed below:

- Metric for Measuring Connectivity (RFC2678) [7];
- A One-way Delay Metric (RFC2679) [8];
- A One-way Packet Loss Metric (RFC2680) [9];
- A Round-trip Delay Metric (RFC2681) [10];
- One-way Loss Pattern Sample Metric (RFC 3357) [11];
- IP Packet Delay Variation Metric (RFC 3393) [12].

B. Sampling Techniques

In this chapter, three conventional sampling techniques, i.e.,
systematic sampling, random sampling and stratified samp-
ling, and their characteristics are introduced.

Then a new sampling technique called “adaptive sampling”
is presented.

Figure 2 illustrates these three sampling techniques.

a) systematic sampling b) random sampling c) stratified sampling

Fig. 2. Sampling techniques

Systematic sampling generates sampling traffic according
to a deterministic function. Generation of the sampling traffic
is triggered by either time (i.e., at fixed intervals) or packet
count (i.e., every N-th packet). Figure 2.(a) shows periodic
sampling with a period of T seconds.

Random sampling employs a random distribution function
to determine when a sample should be generated. Typically
the samples are generated according to a Poisson process. As
shown in Figure 2.(b), random sampling may produce a vary-

ing number of samples in a given time interval. With random
sampling, an unbiased estimate of the QoS metric can be
achieved. However, the entirely random nature of the samp-
ling process may also cause the undesirable effect that samp-
ling intervals are not uniformly distributed, and therefore the
network may not be sampled for a rather long time.

Stratified random sampling combines the fixed time
interval used in systematic sampling with random sampling.
Figure 2.(c) shows stratified random sampling with a period
of T and a random sample is generated in each period.

IV. ADAPTIVE SAMPLING

The proposed in this work sampling method is called
adaptive sampling. In conventional sampling, the sample se-
lection procedure does not depend on the observations made
during the sampling, so that the entire samples may be selec-
ted prior to the start of the sampling process. In adaptive
sampling, the procedure for selecting samples may depend on
the values of the variable of interest observed during the
sampling process. The primary purpose of adaptive sampling
design is to take advantage of population characteristics to
obtain more precise estimates, for a given sample size or cost,
than is possible with conventional designs. For example, the
dynamic nature of network traffic determines that sometimes
the variable of interest (e.g., packet delay, packet loss, traffic
quantity) may be smooth, while at another time, the variable
of interest may present dramatic variations. Intuitively, given
a fixed total sample size, a more accurate estimate can be ob-
tained by changing the sampling rate adaptively such that the
algorithm samples less during periods in which the variable of
interest is smooth and samples more during periods in which
the variable of interest varies dramatically. Figure 3 shows the
adaptive sampling in two measurement intervals. In the mea-
surement of interval i, the variable of interest presents drama-
tic fluctuation, so we select comparatively more samples; whi-
le in the measurement of interval i + j, the variable of interest
changes smoothly, so we select comparatively fewer samples.

Fig. 3. Example of adaptive sampling

The following Figure 4 represents how important is the

choice of the sampling period and how different the aspect of
the traffic load, depending of the sampling period might be.

Despite its advantages, the real implementation of adaptive
sampling may be difficult, which may compromise its advan-
tages. For example, that for stratified sampling, the most accu-

37

Fig. 4 Utilization with different averaging times [13]

rate estimate is obtained by allocating the number of samples
in each stratum so that the number of samples in each stratum
is proportional to the standard deviation of the variable of
interest in the stratum. Then, to implement adaptive stratified
sampling for packet delay measurements, the optimum samp-
ling design should allocate the number of samples in each
stratum to be proportional to the standard deviation of packet
delay in that stratum. Therefore, to determine the optimum
number of samples for the next stratum, the standard deviation
of packet delay in the next stratum has to be predicted. In rea-
lity, the uncertainty and complexity involved in standard devi-
ation prediction may compromise the advantage of using the
adaptive stratified sampling technique.

As discussed above, adaptive sampling methods select
samples adaptively according to values of the variable of inte-
rest observed during the sampling process. The key element of
adaptive sampling is the prediction of future behaviour based
on the observed behaviour. Hernandez et al. employee a linear
prediction (LP) algorithm in their adaptive sampling method
to measure the network throughput [14].

In this part, we propose an adaptive stratified sampling
scheme, which employs a least-mean-square (LMS) linear
prediction algorithm to predict the standard deviation of
packet delay from past observations. Then the sample size for
the next stratum is calculated from the predicted value of the
standard deviation.

Fig. 5 Architecture of LMS algorithm [14]

The LMS algorithm is one of the most widely used adaptive

linear algorithms. A significant feature of the LMS algorithm
is its simplicity. It does not require measurements of the
correlation function, nor does it require matrix inversion. The
adaptive mechanism enables it to approximate the steepest
descent algorithm automatically from sample to sample.
Figure 5 shows the architecture of the LMS algorithm, where

m is the order of the predictor, y(k) is the input vector and wk is
the prediction coefficient vector.

V. MODELLING THE MEASUREMENT TOOL

In this part, we introduce the software design. Firstly, we
introduce the software environment and the functionality of
the software.

Architecture of the Measurement tool - MT System
MT should consists of two kinds of systems ; (a) Control

System (CS) and (b) Measurement System (MS). Fig. 6
describes the architecture of MT.

Fig. 6 Architecture of the proposed MT

Control System (CS): CS, main system of MT, receives

commands sent from Control Shell (CSH), with which opera-
tor controls and manages AMT. CSH is console-based user
interface. CS has three processes like Fig. 6; (a) Control Ser-
ver (CSV), (b) Storage Server (SSV) and (c) DB Server
(DBS). CSV receives commands from operator, parses the
commands, and then processes the commands. CSV consists
of three threads; (a) Main Thread (MAT), (b) Measurement
Thread (MET) and (c) Polling Thread (POT). MAT receives
command from CSH and processes it. MET initiates a measu-
rement and POT checks the health of measurement systems
and network. SSV collects measurement data from local
database (Local DB) of each MS after the measurement and
stores the data in the central database (Central DB). It is for-
ked by CSV when preparing the collection. The collection is
performed with the aid of Delivery Agent (DA) of each MS.
DBS analyzes the gathered raw data and stores them into
Central DB.

Measurement System (MS): MS has four processes like Fig.
6; (a) MT Daemon (MTD), (b) MT Sender (MTS), (c) MT
Receiver (MTR) and (d) Delivery Agent (DA). After MTD,
main process of MS, first registers itself in CS, it receives all
the control messages from CSV, processes them and sends the
result to CSV. For example, when CSV sends the measure-
ment preparation message to the registered MTD of each MS,
MTD receives the message to prepare measurement. It forks
MT Sender (MTS) and MT Receiver (MTR) which will per-
form actual measurement. All the control messages from CSV
to MTS or MTR of each MS are sent to MTS or MTR via
MTD of the MS. The reason that we designed MT system for
all the control message messages between CSV and MTS or
MTR to go via MTD is that we tried to make MTS and MTR
be lightweighted processes that can run stably for a long time.
MTS is forked by MTD when CS starts measurement. After
MTS receives a measurement start message, it generates

38

measurement packets. The packets are generated in Poisson
process by a pseudo-random number generator. MTS sends
every packet to all the MTRs which are joining in the
measurement. MTR is forked by MTD when CS starts
measurement. After MTR receives a measurement start
message, it opens Local DB file to be ready to receive
measurement packets. Whenever it receives a measurement
packet, it stores the record of the packet in Local DB. The
record consists of 5 fields; (a) Sequence Number, (b) Sender
IP Address, (c) Sent Time, (d) Receiver IP Address, and (e)
Received Time. ‘Sequence Number’ is 4-byte sequence
number field. ‘Sender IP Address’ is 4-byte IP address field of
MT sender that sent the packet. ‘Receiver IP Address’ is also
4-byte IP address field of MT receiver that received the
packet. ‘Sent Time’ is 8-byte timestamp field in which the
timestamp is written by Ethernet device driver just before
packet’s being sent into network interface card. ‘Received
Time’ is also 8-byte timestamp field where the timestamp is
written by Ethernet device driver just after packet’s being
received from network interface card. DA is forked by MTD
when CS gathers measurement data from each MS. After DA
receives a gather start message, it opens Local DB and
delivers the measurement data stored in it to SSV of CS.

Procedure of Measurement
Step 1. Initialization of MTD for measurement: CSV sends

all the MTDs that take part in measurement a ‘measure-ready’
message indicating that they have to prepare a measurement.
The control packet including the message provides them with
a system parameter and a list of IP addresses of all the
participating MTDs together with the message.

Step 2. Fork of measurement processes: When MTD of MS
receives the ‘measure-ready’ message, it makes control chan-
nels that will be used to communicate with MTS and MTR
that are implemented in UNIX domain stream socket. It forks
MTS and MTR and then forwards the ‘measure-ready’ mes-
sage to them through the control channels.

Step 3. Establishment of control channel: After MTS and
MTR have been forked by MTD, they establish control chan-
nel that is used to communicate with MTD. MTS and MTR
obtain the system parameter such as the list of IP addresses of
participants from control packet including the ‘mea-sure-
ready’ message. When MTS and MTR are ready to mea-sure,
they report the readiness to MTD through the control channel.

Step 4. Confirmation about readiness from MTD: When
MTD receives the report from both MTS and MTR, MTD
sends CSV a ‘measure-ready-ack’ message indicating that MS
is ready to measure.

Step 5. Start of measurement: When CSV has received the
report from all MTDs, CSV sends them a ‘measure-start’
message indicating that they have to start measurement.

Step 6. Start of actual measurement: When MTD receives
the ‘measure-start’ message, it forwards the message to its
child processes: MTS and MTR.

Step 7. Injection of measurement packets: MTS generates
measurement packets in Poisson process. The packets are sent
to all participating MTRs except MTR in the same host
through UDP socket.

Step 8. Storing of measurement records: When MTR
receives a measurement packet, it stores into Local DB a

record that consists of the following fields; (a) Sequence
Number, (b) Sender IP Address, (c) Sent Time, (d) Receiver
IP Address, and (e) Received Time.

VI. CONCLUSION

The next steps of the development of the MT are the mode-
ling of its primary functions and then – their implementation.
The QoS monitoring software will be written in C++ language
and developed with Microsoft Visual Studio 6.0. The measu-
rements can be taken using the TCP, UDP or ICMP protocol.
The expected results should be used as main part of the work
according to the project mentioned below and for provisioning
application-specific QoS in NGN as to [15] as well.

ACKNOWLEDGEMENT

This work is made in connection to the Project BY-TH
105/2005.

REFERENCES

[1] ITU-T, “Support of ip-based services using ip transfer
capabilities,” Tech. Rep. Rec. Y.1241, 2001.

[2] S. Blake, D. Black, M. Carlson, E. Divies, Z. Wang, W. Weiss,
“An architecture for differentiated services,” IETF RFC 2475,
1998.

[3] C. Molina-Jimenez, S. Shrivastava, J. Crowcroft, and P. Gevros,
“On the monitoring of contractual service level agreements,” in
Proceedings of the (WEC’04), April, 2004.

[4] K. Claffy, G. Polyzos, and H.-W. Braun, “Application of
sampling methodologies to network traffic characterization,”
ACM SIGCOMM Computer Communication Review, vol. 23,
no. 4, pp. 194–203, 1993.

[5] K. Claffy,“Internet measurement and data analysis: topology,
workload, performance and routing statistics”, NAE’99, 1999.

[6] A. Pasztor, “Accurate active measurement in the internet and its
application,” Ph.D. thesis, University of Melbourne, 2003.

[7] J. Mahdavi and V. Paxson, “Ippm metrics for measuring
connectivity,” IETF RFC 2678, September, 1999.

[8] G. Almes, S. Kalidindi, and M. Zekauskas, “A one-way delay
metric for ippm,” IETF RFC 2679, 1999.

[9] G. Almes, “A one-way packet loss metric for ippm,” IETF RFC
2680, 1999.

[10] G. Almes, S. Kalidindi, and M. Zakauskas, “A round-trip delay
metric for ippm,” IETF RFC 2681, 1999.

[11] R. Koodli and R. Ravikanth, “One-way loss pattern sample
metrics,” IETF RFC 3357, 2002.

[12] C. Demichelis and P. Chimento, “Ip packet delay variation
metric for ip performance metric (ippm),” IETF RFC 3393,
2002.

[13] Les Cottrell – SLAC, Network measurement, Lecture # 4
presented at the 26th International Nathiagali Summer College
on Physics and Contemporary Needs, 25th June – 14th July,
Nathiagali, Pakistan, 2005

[14] E. Hernandez, M. Chidester, and A. George, “Adaptive
Sampling for NetworkManagement,” Journal of Network and
Systems Management, vol. 9, no. 4, 2001.

[15] Atanasov I., E. Pencheva, An Approach to Provide Network
Capabilities-based Added Value, Information Technologies and
Control, 3/2007, pp.27-33

39

