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Abstract – Service-level-agreement (SLA) monitoring measu-
res network Quality-of-Service (QoS) parameters to evaluate 
whether the service performance complies with the SLAs. It is 
becoming increasingly important for both Internet service pro-
viders (ISPs) and their customers. However, the rapid expansion 
of the Internet makes SLA monitoring a challenging task. As an 
efficient method to reduce both complexity and overheads for 
QoS measurements, sampling techniques have been used in SLA 
monitoring systems. In this work, using an efficient sampling 
strategy, which makes the measurements less intrusive and more 
efficient, a network performance monitoring software model is 
introduced, which monitors such QoS parameters as packet 
delay, packet loss and jitter for SLA monitoring and verification. 
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I. INTRODUCTION 

Internet Service Providers (ISPs) now offer service level 
agreements (SLAs) routinely to their customers. Management 
needs contractual guarantees that business objectives are met, 
and end-users demand assurance that their critical network 
applications and services are available when needed. The 
availability of SLAs and a means to validate them gives 
management the confidence to move ahead. The wide 
adoption of the E-business model has made it essential that 
service-providers deliver on SLAs in a quantitative and 
qualitative manner. This has driven the service-providers to 
seek consistent testing and measurement methods that make 
real sense of customer network performance. 

An SLA is defined by the International Telecommunica-
tions Union (ITU) as “a negotiated agreement between a 
customer and the service provider on levels of service charac-
teristics and the associated set of metrics. The content of 
SLAs varies depending on the service offering and includes 
the attributes required for the negotiated agreement” [1]. The 
Internet Engineering Task Force (IETF) defines SLAs in a si-
milar way [2]. Figure 1 shows the main features of the SLAs. 

Generally speaking, a good SLA should include these three 
key aspects:  

Service level objectives: encompass Quality-of-Service 
(QoS) parameters or class of service provided, service 
availability and reliability, authentication issues, SLA expiry 
date, and so on. 

Service measuring components: specify the way of 

measuring service quality and other parameters used to assess 
whether the service complies with the SLA. 

Financial compensation components: include billing 
options, penalties for breaking the contract, and so forth. 

 

 
Fig. 1. Structure of service-level-agreements 

II. RESEARCH MOTIVATION AND CONTRIBUTION 

SLA monitoring is about collecting statistical metrics about 
network performance to evaluate whether the provider comp-
lies with the level of QoS that the customer expects [3]. The-
refore, accurate measurement and estimation of network per-
formance becomes a key challenge in SLA monitoring. How-
ever, the implementation of measurement becomes increa-
singly difficult and complex due to the rapid expansion of the 
Internet. Traditional measurement tools, such as “ping”, can-
not satisfy the measurement requirements nowadays. More-
over, the dramatic increase in the speed of wide area back-
bones presents obstacles to complete statistics collection. The 
enormous amount of measurement data may significantly 
increase the cost and resource usage [4]. 

In order to solve these problems, sampling techniques are 
employed in SLA monitoring systems to reduce the quantity 
of control data and resources required to process it, and finally 
to reduce the measurement complexity and cost. Systematic 
sampling and random sampling are two widely used methods 
in existing monitoring systems, but both of them have severe 
limitations. Stratified random sampling can achieve higher 
estimation accuracy, but its high complexity may compromise 
its advantages.  

The aim of this research, which has been funded through 
the research contract “BY-TH 105/2005”, is to develop an 
efficient sampling strategy to make the measurement less 
intrusive and more efficient. Then a network performance 
monitoring software, which monitors such QoS parameters as 
packet delay, packet loss and jitter for SLA monitoring and 
verification, and which uses the proposed sampling strategy, 
needs to be designed. These objectives have been fully 
achieved. Firstly, a theoretical analysis of the performance of 
different sampling techniques is made [5], [6]. Secondly, a 
novel adaptive sampling strategy is proposed. Finally, QoS 
monitoring software model is proposed. 
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III. QOS METRICS REVIEW 

A. Main Usages of Internet Measurements 

As described in [5], the main usages of Internet 
measurements are Internet topology measurement, workload 
measurement, performance monitoring and routing 
measurement. 

- Topology measurement: collects information on the net-
work connectivity and graphical locations of network devices. 
With the rapid development of Internet, it becomes a challen-
ge to track and visualise the complex Internet topology [5]. 

- Workload measurement: focuses on the collection of 
information on the resource usage of routers or switches and 
the link utilisation [5], [6]. 

- Performance measurement: is used by network users or 
researchers in analysing traffic behaviour on specific paths or 
the performance (e.g., packet delay, jitter, packet loss) associ-
ated with individual ISPs. A recent development in the 
industry is the monitoring of SLAs [5]. 

- Routing measurement: measures the dynamics of routing 
protocols and routing updates [6]. 

All of the mentioned above measurements can be perfor-
med in two ways – passive and active measurements. 

The IETF’s IPPM has developed series of standards called 
Requests For Comments (RFC) on network performance mea-
surements. The standard metrics for measurements are defined 
in RFC 2330, which are listed below: 

- Metric for Measuring Connectivity (RFC2678) [7]; 
- A One-way Delay Metric (RFC2679) [8]; 
- A One-way Packet Loss Metric (RFC2680) [9]; 
- A Round-trip Delay Metric (RFC2681) [10]; 
- One-way Loss Pattern Sample Metric (RFC 3357) [11]; 
- IP Packet Delay Variation Metric (RFC 3393) [12]. 

B. Sampling Techniques 

In this chapter, three conventional sampling techniques, i.e., 
systematic sampling, random sampling and stratified samp-
ling, and their characteristics are introduced. 

Then a new sampling technique called “adaptive sampling” 
is presented. 

Figure 2 illustrates these three sampling techniques. 
 

 
a) systematic sampling       b) random sampling        c) stratified sampling 
 

Fig. 2. Sampling techniques 
 

Systematic sampling generates sampling traffic according 
to a deterministic function. Generation of the sampling traffic 
is triggered by either time (i.e., at fixed intervals) or packet 
count (i.e., every N-th packet). Figure 2.(a) shows periodic 
sampling with a period of T seconds. 

Random sampling employs a random distribution function 
to determine when a sample should be generated. Typically 
the samples are generated according to a Poisson process. As 
shown in Figure 2.(b), random sampling may produce a vary-

ing number of samples in a given time interval. With random 
sampling, an unbiased estimate of the QoS metric can be 
achieved. However, the entirely random nature of the samp-
ling process may also cause the undesirable effect that samp-
ling intervals are not uniformly distributed, and therefore the 
network may not be sampled for a rather long time. 

Stratified random sampling combines the fixed time 
interval used in systematic sampling with random sampling. 
Figure 2.(c) shows stratified random sampling with a period 
of T and a random sample is generated in each period. 

IV. ADAPTIVE SAMPLING 

The proposed in this work sampling method is called 
adaptive sampling. In conventional sampling, the sample se-
lection procedure does not depend on the observations made 
during the sampling, so that the entire samples may be selec-
ted prior to the start of the sampling process. In adaptive 
sampling, the procedure for selecting samples may depend on 
the values of the variable of interest observed during the 
sampling process. The primary purpose of adaptive sampling 
design is to take advantage of population characteristics to 
obtain more precise estimates, for a given sample size or cost, 
than is possible with conventional designs. For example, the 
dynamic nature of network traffic determines that sometimes 
the variable of interest (e.g., packet delay, packet loss, traffic 
quantity) may be smooth, while at another time, the variable 
of interest may present dramatic variations. Intuitively, given 
a fixed total sample size, a more accurate estimate can be ob-
tained by changing the sampling rate adaptively such that the 
algorithm samples less during periods in which the variable of 
interest is smooth and samples more during periods in which 
the variable of interest varies dramatically. Figure 3 shows the 
adaptive sampling in two measurement intervals. In the mea-
surement of interval i, the variable of interest presents drama-
tic fluctuation, so we select comparatively more samples; whi-
le in the measurement of interval i + j, the variable of interest 
changes smoothly, so we select comparatively fewer samples. 

 
Fig. 3. Example of adaptive sampling 

 
The following Figure 4 represents how important is the 

choice of the sampling period and how different the aspect of 
the traffic load, depending of the sampling period might be. 

Despite its advantages, the real implementation of adaptive 
sampling may be difficult, which may compromise its advan-
tages. For example, that for stratified sampling, the most accu- 
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Fig. 4 Utilization with different averaging times [13] 
 

rate estimate is obtained by allocating the number of samples 
in each stratum so that the number of samples in each stratum 
is proportional to the standard deviation of the variable of 
interest in the stratum. Then, to implement adaptive stratified 
sampling for packet delay measurements, the optimum samp-
ling design should allocate the number of samples in each 
stratum to be proportional to the standard deviation of packet 
delay in that stratum. Therefore, to determine the optimum 
number of samples for the next stratum, the standard deviation 
of packet delay in the next stratum has to be predicted. In rea-
lity, the uncertainty and complexity involved in standard devi-
ation prediction may compromise the advantage of using the 
adaptive stratified sampling technique. 

As discussed above, adaptive sampling methods select 
samples adaptively according to values of the variable of inte-
rest observed during the sampling process. The key element of 
adaptive sampling is the prediction of future behaviour based 
on the observed behaviour. Hernandez et al. employee a linear 
prediction (LP) algorithm in their adaptive sampling method 
to measure the network throughput [14]. 

In this part, we propose an adaptive stratified sampling 
scheme, which employs a least-mean-square (LMS) linear 
prediction algorithm to predict the standard deviation of 
packet delay from past observations. Then the sample size for 
the next stratum is calculated from the predicted value of the 
standard deviation. 

 
Fig. 5 Architecture of LMS algorithm [14] 

 
The LMS algorithm is one of the most widely used adaptive 

linear algorithms. A significant feature of the LMS algorithm 
is its simplicity. It does not require measurements of the 
correlation function, nor does it require matrix inversion. The 
adaptive mechanism enables it to approximate the steepest 
descent algorithm automatically from sample to sample. 
Figure 5 shows the architecture of the LMS algorithm, where 

m is the order of the predictor, y(k) is the input vector and wk is 
the prediction coefficient vector. 

V. MODELLING THE MEASUREMENT TOOL 

In this part, we introduce the software design. Firstly, we 
introduce the software environment and the functionality of 
the software.  

Architecture of the Measurement tool - MT System  
MT should consists of two kinds of systems ; (a) Control 

System (CS) and (b) Measurement System (MS). Fig. 6 
describes the architecture of MT.  

 
Fig. 6 Architecture of the proposed MT   

 
Control System (CS): CS, main system of MT, receives 

commands sent from Control Shell (CSH), with which opera-
tor controls and manages AMT. CSH is console-based user 
interface. CS has three processes like Fig. 6; (a) Control Ser-
ver (CSV), (b) Storage Server (SSV) and (c) DB Server 
(DBS). CSV receives commands from operator, parses the 
commands, and then processes the commands. CSV consists 
of three threads; (a) Main Thread (MAT), (b) Measurement 
Thread (MET) and (c) Polling Thread (POT). MAT receives 
command from CSH and processes it. MET initiates a measu-
rement and POT checks the health of measurement systems 
and network. SSV collects measurement data from local 
database (Local DB) of each MS after the measurement and 
stores the data in the central database (Central DB). It is for-
ked by CSV when preparing the collection. The collection is 
performed with the aid of Delivery Agent (DA) of each MS. 
DBS analyzes the gathered raw data and stores them into 
Central DB. 

Measurement System (MS): MS has four processes like Fig. 
6; (a) MT Daemon (MTD), (b) MT Sender (MTS), (c) MT 
Receiver (MTR) and (d) Delivery Agent (DA). After MTD, 
main process of MS, first registers itself in CS, it receives all 
the control messages from CSV, processes them and sends the 
result to CSV. For example, when CSV sends the measure-
ment preparation message to the registered MTD of each MS, 
MTD receives the message to prepare measurement. It forks 
MT Sender (MTS) and MT Receiver (MTR) which will per-
form actual measurement. All the control messages from CSV 
to MTS or MTR of each MS are sent to MTS or MTR via 
MTD of the MS. The reason that we designed MT system for 
all the control message messages between CSV and MTS or 
MTR to go via MTD is that we tried to make MTS and MTR 
be lightweighted processes that can run stably for a long time. 
MTS is forked by MTD when CS starts measurement. After 
MTS receives a measurement start message, it generates 
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measurement packets. The packets are generated in Poisson 
process by a pseudo-random number generator. MTS sends 
every packet to all the MTRs which are joining in the 
measurement. MTR is forked by MTD when CS starts 
measurement. After MTR receives a measurement start 
message, it opens Local DB file to be ready to receive 
measurement packets. Whenever it receives a measurement 
packet, it stores the record of the packet in Local DB. The 
record consists of 5 fields; (a) Sequence Number, (b) Sender 
IP Address, (c) Sent Time, (d) Receiver IP Address, and (e) 
Received Time. ‘Sequence Number’ is 4-byte sequence 
number field. ‘Sender IP Address’ is 4-byte IP address field of 
MT sender that sent the packet. ‘Receiver IP Address’ is also 
4-byte IP address field of MT receiver that received the 
packet. ‘Sent Time’ is 8-byte timestamp field in which the 
timestamp is written by Ethernet device driver just before 
packet’s being sent into network interface card. ‘Received 
Time’ is also 8-byte timestamp field where the timestamp is 
written by Ethernet device driver just after packet’s being 
received from network interface card. DA is forked by MTD 
when CS gathers measurement data from each MS. After DA 
receives a gather start message, it opens Local DB and 
delivers the measurement data stored in it to SSV of CS. 

Procedure of Measurement 
Step 1. Initialization of MTD for measurement: CSV sends 

all the MTDs that take part in measurement a ‘measure-ready’ 
message indicating that they have to prepare a measurement. 
The control packet including the message provides them with 
a system parameter and a list of IP addresses of all the 
participating MTDs together with the message. 

Step 2. Fork of measurement processes: When MTD of MS 
receives the ‘measure-ready’ message, it makes control chan-
nels that will be used to communicate with MTS and MTR 
that are implemented in UNIX domain stream socket. It forks 
MTS and MTR and then forwards the ‘measure-ready’ mes-
sage to them through the control channels. 

Step 3. Establishment of control channel: After MTS and 
MTR have been forked by MTD, they establish control chan-
nel that is used to communicate with MTD. MTS and MTR 
obtain the system parameter such as the list of IP addresses of 
participants from control packet including the ‘mea-sure-
ready’ message. When MTS and MTR are ready to mea-sure, 
they report the readiness to MTD through the control channel. 

Step 4. Confirmation about readiness from MTD: When 
MTD receives the report from both MTS and MTR, MTD 
sends CSV a ‘measure-ready-ack’ message indicating that MS 
is ready to measure. 

Step 5. Start of measurement: When CSV has received the 
report from all MTDs, CSV sends them a ‘measure-start’ 
message indicating that they have to start measurement. 

Step 6. Start of actual measurement: When MTD receives 
the ‘measure-start’ message, it forwards the message to its 
child processes: MTS and MTR. 

Step 7. Injection of measurement packets: MTS generates 
measurement packets in Poisson process. The packets are sent 
to all participating MTRs except MTR in the same host 
through UDP socket. 

Step 8. Storing of measurement records: When MTR 
receives a measurement packet, it stores into Local DB a 

record that consists of the following fields; (a) Sequence 
Number, (b) Sender IP Address, (c) Sent Time, (d) Receiver 
IP Address, and (e) Received Time.  

VI. CONCLUSION 

The next steps of the development of the MT are the mode-
ling of its primary functions and then – their implementation. 
The QoS monitoring software will be written in C++ language 
and developed with Microsoft Visual Studio 6.0. The measu-
rements can be taken using the TCP, UDP or ICMP protocol. 
The expected results should be used as main part of the work 
according to the project mentioned below and for provisioning 
application-specific QoS in NGN as to [15] as well. 
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