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Abstract – In this paper, the principles of uniform rectangular 
array (URA) based on narrowband radio-frequency signals are 
introduced. An URA is composed of a number of uniformly 
distributed identical half-wavelength dipoles. Limited numerical 
examples and simulation results are presented to illustrate the 
direction of arrival (DOA) and adaptive beamforming (ABF) 
methods. 

 
Keywords – smart antennas, uniform rectangular array, 

direction of arrival, adaptive beamforming. 

I. INTRODUCTION 

Smart antennas have undergone enormous growth and 
become popular during the recent years. The central idea of 
smart antennas is spatial processing. Deployed at the base 
station of the existing infrastructure, adaptive arrays with an 
appropriate configuration can provide a substantial capacity 
improvement in the frequency-resource-limited radio-
communication system by an efficient frequency-reuse 
scheme. 

 The investigation of smart antennas suitable for wireless 
communication systems has involved primary uniform linear 
arrays (ULA) and uniform rectangular arrays (URA). ULA 
lack the ability to scan in 3-D space, and it is necessary for 
wireless devices to scan the main beam in any direction of 
elevation and azimuth, the URA is more attractive for mobile 
communications. 

The DOA estimation involves a correlation analysis 
followed by signal/noise subspace formation and 
eigenstructure analysis. For the significant improvement in 
smart antenna resolution the 2-D unitary ESPRIT method is 
considered [1]. One of the most popular reference-based 
methods applicable to URA is the classical least mean squares 
(LMS) algorithm [2], [3]. 

 

 

 

 

 

 

II. SMART ANTENNA WITH UNIFORM 
RECTANGULAR  ARRAY STRUCTURE 

The URA consisting N x M equally distributed identical 
half-wavelength dipoles (M, N – even), as illustrated in Fig. 1 
is located symmetrical in x-y plane. 

Let us assume that an incoming narrowband signal (plane 
wave with wavelength λ ) arrives at the array from elevation 
angle θ  and azimuth angleφ . The origin of coordinate 
system is located at the center of the array. 

As demonstrated in Fig. 1, the array factor (AF) of URA 
with its maximum along 0θ , 0φ  is given by [3] 
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where Amn is the amplitude excitation of the individual 
element, and dx, dy are the interelement spacing along the x-
axis and the y-axis, respectively. 
 

 
 

Fig. 1. Geometry of (N x M) - element URA, along with an incoming 
plane wave. 
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III. DIRECTION OF ARRIVAL ESTIMATION 

After that the URA receives all incoming signals from 
directions of arrival, the DOA algorithm determines the 
directions of these signals based on the time delays. Let us 
assume that a narrowband plane wave impinges at an angle 
( )φθ ,  on the URA. It produces time delays relative to the 
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other array elements. These time delays depend on array 
geometry, number of elements, and interelement spacing. 

For the URA of Fig. 1, the time delay of the narrowband 
signal at the (m, n)th element with respect to the origin, is 
written as [4] 
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where  c is speed of light in free space. 

Two algorithms that fall into subspace-based method 
category for the azimuth and elevation estimation are MUSIC 
(Multiple Signal Classification) and ESPRIT (Estimation of 
Signal Parameters via Rotational Invariance Technique). In 
the paper the latter one is presented and used. 

 
A. Classical ESPRIT – advantages in comparison with 

MUSIC 
 
Classical ESPRIT is a robust method that exploits subarray 

structure for DOA estimation [3]. ESPRIT has become the 
method of choice because it has ability to offer a number of 
advantages over MUSIC, such as: a) does not require 
calibration of the antenna array; b) computationally less 
intensive and more efficient; c) does not involve search 
through all possible steering vectors to estimate the DOA. 

 
B. 2-D Unitary ESPRIT algorithm for DOA estimation 

 
The 2-D unitary ESPRIT algorithm is unique different from 
the classical ESPRIT, first of them provides closed-form 
automatically paired two dimensional estimation as long as 
the elevation and azimuth of each narrowband signal arrives at 
the URA [1]. This method provides closed form 2-D angle 
estimation in real time. This method gives several advantages 
in comparison with classical ESPRIT, such as: a) reduced 
computational complexity; b) lower SNR (signal-to-noise 
ratio) resolution thresholds; c) very accurate finds 
simultaneously both the elevation and azimuth angles of 
arrival for impinging signals at the antenna array. 

IV. ADAPTIVE BEAMFORMIG ESTIMATION 

Two classes of adaptive beamforming (ABF) algorithms are 
represented in literature : 1) DOA-based adaptive beamformig 
algorithms that utilizes information for angles of arrival of 
incoming signals to ideally steer the maximum of the antenna 
radiation pattern toward the desired signal and place nulls 
toward the unwanted signals or interferences; 2) reference-
based ABF algorithms does not need DOA information but 
instead uses the reference signal to adjust weights of 
correlation array matrix to match the created time delays. In 
this section, we consider one of the most popular reference-
based ABF algorithms - least mean squares (LMS) algorithm 
that uses previous samples when estimating the gradient at the 
nth iteration. 

The LMS algorithm is applicable mainly when weights are 
updated utilizing reference signal. This algorithm uses an 

estimator of the gradient instead of the real value of the 
gradient because the real value estimation requires DOA 
information. 

The expression of optimal weights for half-wavelength 
dipoles is given by [5], [6], [7] 

 
     ( ) ( ) (( )nnn wgw1w μ−=+ )                    (5) 
 

where ( )1+nw  denotes a new computed weights vector at the 
(n+1)th iteration, μ  is the gradient step size, and the                
array output is given by 
 

 ( )( ) ( ) ( 1+= nnny H xww )                    (6) 
 

where ( )1+nx  is array signal vector computed at the (n+1)th 
iteration, and ( )( )nwy  is output signal. 

In its standard form it uses an estimate of the gradient by 
replacing array correlation matrix R and correlation between 
array signals and reference signal r by their noisy estimates at 
the (n+1)th iteration [5] 

 
      ( )( ) ( ) ( ) ( ) ( ) ( )1nr1n2n1n1n2n H ++−++= *xwxxwg     (7) 
 where g is the gradient vector. 

The error between array output and the reference signal is 
given by [5] 

 
         ( )( ) ( ) ( ) ( 11 +−+= nnnrn H xwwε )            (8) 

and 
         ( )( ) ( ) (( )nnn wxwg *12 ε+−= )           (9) 
 

The estimated gradient is a product of the error between the 
reference signal and the output of the array and the signals 
after the nth iteration. 

This algorithm provides several advantages: the gradient 
estimate is unbiased, and the low complexity. 

V. NUMERICAL EXAMPLES AND SIMULATION 
RESULTS 

We investigate the DOA estimation under the conditions of 
a URA structure with half-wavelength dipoles. The 2-D 
unitary ESPRIT method is used to perform the estimation [1]. 
The signal of interest (SOI) impinges from 
( ), while the three signals not of interest 

(SNOI) are directed from ( ), 

( ), and ( ). Simulations 
were conducted employing: a) a N=6, M=6 elements uniform 
rectangular array with 

00 100,50 == φθ

00 95,45 == φθ

00 105,55 == φθ
095=φ0 ,55=θ

λ5.0== ydxd ; b) a N=8, M=8 

elements uniform rectangular array with λ5.0== yx dd ; c) 
a N=8, M=6 elements uniform rectangular array with 

λ5.0== yx dd . The URA is examined in the presence of 
the Additive White Gaussian Noise (AWGN) with the zero 
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mean, and variance 0.1. The results demonstrate its great 
performance, accurate estimation ability, and robustness. 

 
TABLE I 

THE DOA ESTIMATIONS OBTAINED UTILIZING 2-D UNITARY ESPRIT 

 Case 1 Case 2 Case 3 
Number of 
elements M=6 ,N=6 M=8, N=8 M=6, N=8 

Interelement 
spacing 0.5λ 0.5λ 0.5λ 

Number of 
incoming 
signals 

1 1 1 

Number of 
data 

samples 
2000 2000 2000 

Actual 

SOI θ1=500, 
φ1=1000 

θ1=500, 
φ1=1000 

θ1=500, 
φ1=1000 

SNOI 1 θ 2=550, 
φ2=1050 

θ 2=550, 
φ2=1050 

θ 2=550, 
φ2=1050 

SNOI 2 θ 3=450, 
φ3=950 

θ 3=450, 
φ3=950 

θ 3=450, 
φ3=950 

SNOI 3 θ 4=550, 
φ4=950 

θ 4=550, 
φ4=950 

θ 4=550, 
φ4=950 

DOA Estimations 

SOI θ1=50.0210, 
φ1=100.0530 

θ1=49.9920, 
φ1=99.9940 

θ1=49.9990, 
φ1=100.0300 

SNOI 1 θ2=55.0570, 
φ2=105.0470 

θ2=54.9940, 
φ2=104.9930 

θ2=55.0010, 
φ2=104.9670 

SNOI 2 θ3=44.9700, 
φ3=94.9640 

θ3=44.9810, 
φ3=94.9960 

θ3=45.0010, 
φ3=94.9990 

SNOI 3 θ4=55.0210, 
φ4=94.9710 

θ4=54.9900, 
φ4=94.9980 

θ4=55.0030, 
φ4=94.9660 

 
Simulation results, utilizing the LMS algorithm gave 

precise results when adapt the beamforming pattern. To 
illustrate the ABF algorithm applicability for URA with half-
wavelength dipoles, we considered the three cases where LMS 
algorithm is used: a) a N=6, M=6 elements uniform 
rectangular array and interelement spacing λ5.0== yx dd ; 
b) a N=8, M=8 elements uniform rectangular array and 
interelement spacing λ5.0== yx dd ; c) a N=8, M=6 
elements uniform rectangular array and interelement spacing 

λ5.0== yx dd

75=θ

. The results from simulations are depicted in 
figures. The URA is examined about following scenario: the 
signal of interest (SOI) impinges from ( , ) 
in the presence of the signal not of interest (SNOI) from 
direction ( , ), and Additive White Gaussian 
Noise (AWGN) with the zero mean, and variance 0.1. All 
simulation results are based on 100 times Monte Carlo 
simulations. A stepsize μ = 0.001 and a signal is with uncoded 
BPSK modulation are used in the numerical examples to 
simplify the simulations. Figures illustrate the resulting 
beamforming pattern with respect to . The results 

demonstrate its great performance, and accurate estimation 
ability. 
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Fig. 2. The beamforming pattern of the URA with N=6 and M=6 

elements. 
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Fig. 3. The beamforming pattern of the URA with N=8 and M=8 

elements. 
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Fig. 4. The beamforming pattern of the URA with N=8 and M=6 

elements. 
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VI. CONCLUSION 

This paper investigated uniform rectangular smart antennas 
with half-wavelength dipoles. Two main issues: estimation of 
direction of arrival (DOA) and adaptive beamforming (ABF) 
were examined. The main approach to DOA here was the 
algorithm 2-D unitary ESPRIT. The technique for ABF used 
here was the LMS algorithm. The URA antennas were 
exploited in order to obtain more efficient method for a 
calculation of accurate eigenvalues. Matlab programs are used 
for simulations. 

The 2-D unitary ESPRIT is a method that provides closed-
form automatically-paired source azimuth and elevation 
estimates. These results are proved to be accurate enough. 

Concerning beamforming the URA has shown to be 
accurate and stable enough regarding both: desired signal 
(maximum) and interfering signals (deep nulls). The figures 
have shown that the adaptive array puts the maximum of the 
beamforming pattern to the SOI and at the same time – deep 
nulls towards the SNOIs. 

Numerical examples and simulation results have illustrated 
that the optimal scenario for the antenna geometry is URA 
with M=N=6 elements, because the DOA and ABF 
estimations are proved to be accurate and stable enough, and 
the ability of the smart antenna to reject SNOIs is affected by 
the size and geometry of the antenna array. Using a larger 
URA may even make the smart antenna costly and impractical 
to realize. Consequently, it is observed that the designs of the 
smart antenna impact on the overall wireless communication 
network efficiency. 
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