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Abstract – Design of leading ones or zeros counter in data 

represented as strings of binary digits is presented in this paper. 
The proposed design method is applicable to data length of 4k 
bits, for 4≤ k ≤16. For longer data length, multiple copies of the 
designed counter can be used with addition of very simple 
circuits. The proposed design enables very high speed 
implementation in contemporary technologies. 
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I. INTRODUCTION 

In computer technique, it is frequently necessary to count 
leading ones or zeros in some data reprezented as strings of 
binary digits. Normalization of significand in the floating 
point arithmetic is maybe the most famous example. 
Techniques that are used for speeding up counting of leading 
ones or zeros can also be used for encoding of leading zeros 
anticipator in floating point arithmetic. Counting of leading 
digits of the divisor may be neded for some fixed point divide 
algorithms. Some processors, for example the MIPS family 
processors, in their instruction sets have special instructions 
for counting leading ones and leading zeros in 32 bit integer 
data. 

Counting or detection of leading zeros and/or leading ones 
has been considered separately [1,4,5] or in framework of 
leading zeros anticipation [2,3]. Solution which we have 
proposed here is improvement of previous solution in 
including counting leading zeros or leading ones by our 
choice, and network with lower number of logic levels, with 
lower propagation time. 

In section II we have explained the method of synthesis of 
leading ones/zeros counter. Section III contains performance 
evaluation of proposed solution. Section IV contains 
conclusion, and section V contains used references. 

II. SYNTHESYS OF LEADING ONES/ZEROS 
COUNTER 

Leading zeros are zeros in most significant positions of 
data, up to the position in which first one is present. 
Analogous, leading ones are ones in most significant positions 
of data, up to the position in which first zero is present. These 
definitions may by presented in the forms of 0k1x* for k 
leading zeros, and 1k0x* for k leading ones, where x is either 0 
od 1, the superscripts reprezent k instances of digit 0 or 1, and 

* reprezents zero or more instances of digit x. For example, in 
the binary datum 00001xxx....xxx the count of leading zeros is 
four, and in the datum 110xxx...xxx the count of leading ones 
is two. 

We will consider the 32 bit data, but the solution that we 
will present here is applicable to data length of 4k bits, for 4 ≤ 
k ≤ 16. We will explain the switching network design, which 
for 32 bit data, under our choice, counts leading ones or zeros. 

Let us divide the 32 bit data X(31:0) to 4 bits nibbles. In this 
data bit 31 is MSBit and bit 0 is LSBit. 

X:31÷28 | 27÷24 | 23÷20 | 19÷16 | 15÷12 | 11÷8 |  7÷4  |  3÷0 
     p0,V0    p1,V1     p2,V2     p3,V3     p4,V4    p5,V5  p6,V6   p7,V7 
    s0,Z0     s1,Z1      s2,Z2      s3,Z3     s4,Z4     s5,Z5   s6,Z6    s7,Z7 

Labels below nibbles, pi and si , 0 ≤ i ≤ 7, denotes logical 
products (AND operation) and complements of logical sums 
(NOR operation) of data bits in ith nibble, and Vi and Zi 
denotes count of leading ones and zeros in that nibble. 

General expression for pi is 
pi = x31-4i⋅x31-(4i+1)⋅x31-(4i+2)⋅x31-(4i+3) , i=0,1,...,7               (1) 

 
TABLE I  Boundary nibble encoding as function of products 

Values of logical products 

Ordinal 
numb. of 
boundary 
nibble, n 

Count of 
leading 
ones, m 

Selector 
bits to 
mux 

y2  y1  y0 

p0=0 0 0 ÷ 3   0  0  0 
p0=1, p1=0 1 4 ÷ 7   0  0  1 
p0⋅p1=1, p2=0 2 8 ÷ 11   0  1  0 
p0⋅p1⋅p2 =1, p3=0 3 12 ÷ 15   0  1  1 
p0⋅p1⋅p2⋅p3 =1, p4=0 4 16 ÷ 19   1  0  0 
p0⋅p1⋅p2⋅p3⋅p4 =1, p5=0 5 20 ÷ 23   1  0  1 
p0⋅p1⋅p2⋅p3⋅p4⋅p5=1, p6=0 6 24 ÷ 27   1  1  0 
p0⋅p1⋅p2⋅p3⋅p4⋅p5⋅p6=1, p7=0 7 28 ÷ 31   1  1  1 
p0⋅p1⋅p2⋅p3⋅p4⋅p5⋅p6⋅p7=1 - 32   0  0  0 

 
In Table 1 the expression in column “Values of logical 

products” contains expressions which determine the ordinal 
number of nibble, counting from zero from left to right, in 
which continuous string of ones terminates, followed by first 
zero. Such nibble we will call boundary nibble. In this column 
character “⋅” designates AND operation. The last table’s row 
refers to the data with number of ones equal to the length of 
data, in this case 32. In the column “Number of leading ones” 
are shown the ranges of possible numbers of leading ones for 
these conditions. These numbers of leading ones can be found 
as the sum of values 4n and Vn, where 0 ≤ n ≤ 7 is the ordinal 
number of boundary nibble with one or more zeros, and Vn is 
the number of terminal ones in this boundary nibble. For 
example, in datum 
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the first three nibbles contain only ones, while the fourth 
nibble beside two ones also contains two zeros. That’s why 
the nibble with ordinal number three is boundary nibble, with 
two terminal ones, thence n = 3 and Vn = 2, and the number of 
leading ones is m=14. 

m = 4n + Vn (2) 

Last column of Table I encodes ordinal number of boundary 
nibble from second column, and will be used as the selector 
bits to multiplexor MUX 1 and MUX 2 in the network 
presented in Figure 3. 

Because the values of n in range 0 – 7 are multiplied by 4, 
and Vn can have values in range 0 – 3, multiply operation n by 
4 and adding Vn can be substituted by concatenation of three 
bits of n and two bits of Vn. 

From first and fourth columns of Table I we can get 
following expressions for y2, y1, and y0: 

)ppp(ppppp)ppp(py

(3)                            )pppppp(pp

ppppppppy
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In fact, columns 1 and 4 of Table I define function of 
priority encoder with eight input lines and three output lines, 
as can be seen in standard integrated circuits families. 

Dependence of the number of leading ones in the boundary 
nibble, which contains less then four ones, is presented in 
Table II. The last table’s row is an exception, because it 
represents the case when the nibble is not boundary. To 
simplify bit’s labels we have introduced index k, k = 31-4i, 
i=0, …, 7. Value Vi= {vi

1 vi
0} represents this number of 

leading ones in binary. From this table logical expressions for 
vi

1 and vi
0 are: 
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Number of leading zeros can be 

found by the same way if for 
every nibble we take NOR logical 
operation on their bits: 

 
(5)      0,1,..,7i ,xxxxs 3)(4i312)(4i311)(4i314i31i =+++= +−+−+−−  

Then si =1 indicate that ith nibble contains all zeros. As with 
counting leading ones, ordinal number of boundary nibble and 
range of count of leading zeros in relation to values of si can 
be presented as in Table I, with only one difference: in first 
column, instead of products of pi, in that table must stand 
products of si, 0≤ i ≤7. Insufficient space and only that 
difference are reasons why we don’t present such table for 
leading zeros. 

Dependence of the number of leading zeros in the boundary 
nibble, which contains less then four zeros, is presented in 
Table III. The last table’s row is an exception, because it 
represents the case when the nibble is not boundary. Value 

Zi= {zi
1 zi

0} represents this number of leading zeros in binary. 
From this table logical expressions for zi

1 and zi
0 are: 
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Values in columns 2 to 4 of 
Table I and analogous table for 
leading zeros are equal, and in 
column 1 they differ only by 
using AND or NOR operation 
on nibble’s bits in data. This 
suggests that logical function 
y2, y1 and y0 in both tables can 
be implemented by the same 
combinatorial network, with 
inputs pi for leading ones and si 
for leading zeros. Let qi be the 

input signal to that network with values: 
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Fig. 1. Scheme of BNE network 
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Fig. 2. Scheme of NCNi network 

TABLE II Encoding leading 
ones in boundary nibble 

xk xk-1xk-2xk-3 vi
1 vi

0 
0   x   x    x 0  0 
1   0   x    x 0  1 
1   1   0    x 1  0 
1   1   1    0 1  1 
1   1   1    1 0  0 

TABLE III Encoding leading 
zeros in boundary nibble 

xk xk-1xk-2xk-3 zi
1 zi

0 
1   x   x    x 0  0 
0   1   x    x 0  1 
0   0   1    x 1  0 
0   0   0    1 1   1 
0   0   0    0 0   0 
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qi = pi for counting leading ones, 
qi = si for counting leading zeros. 
Combinatorial network which implements the switching 

functions yj = fj(q0, q1, …, q7), j= 2, 1, 0, is shown in Figure 1. 
In addition, this network implements the logical product 
Q=q0⋅q1⋅q2⋅q3⋅q4⋅q5⋅q6⋅q7 , which by value 1 signalizes that the 
datum in all eight nibbles has all ones or zeros. 

Figure 2 shows the network which implements switching 
functions pi and si from expressions 1 and 5 respectively, and 
zi

1,zi
0 and vi

1,vi
0 from expressions 4 and 6 respectively. 

Finally, Figure 3 shows the complete block scheme of the 
leading ones/zeros counter. Blocks NCN0 ÷ NCN7 contain 
logical networks shown in Figure 2, and block BNE 
(Boundary Nibble Encoder) logical networks shown in Figure 
1. LZLO/ selects counting leading ones or zeros. Stout line 
on leading ones/zeros counter’s output represents grouping of 
one output line Q from BNE network, three lines from MUX1 
and two lines from MUX2, which carry bits 5, 4:2 and 1:0 of 
the leading ones/zeros count’s six bits. 

This solution can be extended for counting leading 
ones/zeros in 64 bit data as follows. Let the network presented 
in Figure 3 with outputs “Number of leading ones/zeros (0-
32)” be one module with outputs NLO/Z (bits 4:0) and Q. 
Two such modules are connected to the outputs of 64 bit 
register X as is presented in Figure 4. Signal QH=0 shows that 

data bits 63 to 32 contains not only ones (zeros), and the count 
of leading ones (zeros) in range 0÷31 is determined by 
00||NLO/ZH . Here 00 are two most significant bits, and 
NLO/ZH gives five lower bits in the seven bits count of 
leading ones/zeros. The sign || is concatenation. When QH=1 
and QL=0, most significant 32 data bits are only ones (zeros), 
and 32 lower data bits contains ones and zeros. The number of 
leading ones (zeros) is in the range 32÷63, and is determined 
by 01||NLO/ZL . Finally, for QH=1 and QL=1 all data bits are 
ones (zeros), and the number of leading ones (zeros) is 64. 
These values are written in the third column of Table IV. 
They are put on MUX’s data input lines as presented in Figure 
4, and MUX’s seven output lines give us the number of 
leading ones/zeros in the range 0-64. 

TABLE IV Forming results with output multiplexer 

QH QL 

Number 
of leading 
ones/zeros 

The way of 
forming 

MUX’s 
select 
inputs: 
r1   r0 

MUX’s 
data 
input 
lines 

0  x 0 ÷ 31 00||NLO/ZH 0   0 0 

1  0 32 ÷ 63 01||NLO/ZL 0   1 1 

1  1 64 1000000 1   0 2 

X 31.....28 27.....24 23.....20 19.....16 15.....12 11..... 8 7 ..... 4 3 ..... 0

       2  1  0y y y

M
U
X
1

Number of leading
   ones/zeros (0-32)

0

Q

1
2
3
4
5
6
7

3

3

6bits 1,0
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Fig. 3. Block scheme of leading ones/zeros counter in 32-bit data 
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Fig. 4. Block scheme of leading ones/zeros counter in 64 bit 
data 

III. PERFORMANCE EVALUATION 

As the building block of microarchitecture of contemporary 
processors, proposed leading ones/zeros counter must satisfy 
required performance level. In performance evaluation we are 
considering only the time delay through the proposed leading 
ones/zeros counter. In the context of discussions of logic 
delays, the FO4 metric is used by processor architects as a 
process neutral metric that can be applied to abstract design 
and architectural discussions. So, we are using FO4 
(equivalent) gate delays as a measure [6], which is simply the 
delay through an inverter that has to provide the output drive 
current sufficient to drive 4 other inverters of comparable 
sizes. In addition, it must be counted the maximal number of 
level of logical circuits in the considered network. This 
number of level then must be multiplied with the delay time 
per logical circuit to find the delay time through the entire 
network. 

In the network in Figure 3 signals propagate through the 
following blocks: NCNi, MUX, BNE, (MUX1, MUX2 in 
parallel). From Figures 1 and 2 the maximal numbers of levels 
for NCNi and BNE are 4 and 5 respectively. For MUX below 
NCNi blocks we find 3 logic levels, and for MUX1 we find 4 
logic levels. Adding these numbers gives 16 logic levels. With 
FO4 gate delay of 25 ps for 0.18μm process technology [6], 
the delay time for the proposed leading ones/zeros counter for 

32 bit data is 16×25=400 ps. For 64-bit leading ones/zeros 
counter to this time delay must be added time delay through 
MUX select logic r1r0 and MUX, with 2+3=5 logic level, and 
additional 5×25=125 ps. For the whole 64-bit leading 
ones/zeros counter time delay is 525 ps. Of course, with 
contemporary process technology with shorter FO4 per gate 
delay time, the performance presented here is even better. 

IV. CONCLUSION 

Systematic design of leading ones/zeros counter is 
presented in this paper. Although example design presented 
here is for 32 bit data, the methodology used for them is 
applicable to design of leading ones/zeros counter for data 
length of 4k bits, for 4 ≤ k ≤ 16. 

The advantages of this leading ones/zeros counter are: 
- choice to count leading ones or zeros, 
- relatively little quantity of logic circuits attained by using 
common logic blocks (BNE, MUX1, MUX2) for counting 
leading ones and zeros, 
- modular design which enables simple upscaling for longer 
data, 
- short time delay, with little additional delay with upscaling. 
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