

Design of Leading Ones or Zeros Counting Circuit
Nebojsa Z. Milenkovic1, Vladimir V. Stankovic2

Abstract – Design of leading ones or zeros counter in data

represented as strings of binary digits is presented in this paper.
The proposed design method is applicable to data length of 4k
bits, for 4≤ k ≤16. For longer data length, multiple copies of the
designed counter can be used with addition of very simple
circuits. The proposed design enables very high speed
implementation in contemporary technologies.

Keywords – Leading zeros/ones count, detection, modular

design.

I. INTRODUCTION

In computer technique, it is frequently necessary to count
leading ones or zeros in some data reprezented as strings of
binary digits. Normalization of significand in the floating
point arithmetic is maybe the most famous example.
Techniques that are used for speeding up counting of leading
ones or zeros can also be used for encoding of leading zeros
anticipator in floating point arithmetic. Counting of leading
digits of the divisor may be neded for some fixed point divide
algorithms. Some processors, for example the MIPS family
processors, in their instruction sets have special instructions
for counting leading ones and leading zeros in 32 bit integer
data.

Counting or detection of leading zeros and/or leading ones
has been considered separately [1,4,5] or in framework of
leading zeros anticipation [2,3]. Solution which we have
proposed here is improvement of previous solution in
including counting leading zeros or leading ones by our
choice, and network with lower number of logic levels, with
lower propagation time.

In section II we have explained the method of synthesis of
leading ones/zeros counter. Section III contains performance
evaluation of proposed solution. Section IV contains
conclusion, and section V contains used references.

II. SYNTHESYS OF LEADING ONES/ZEROS
COUNTER

Leading zeros are zeros in most significant positions of
data, up to the position in which first one is present.
Analogous, leading ones are ones in most significant positions
of data, up to the position in which first zero is present. These
definitions may by presented in the forms of 0k1x* for k
leading zeros, and 1k0x* for k leading ones, where x is either 0
od 1, the superscripts reprezent k instances of digit 0 or 1, and

* reprezents zero or more instances of digit x. For example, in
the binary datum 00001xxx....xxx the count of leading zeros is
four, and in the datum 110xxx...xxx the count of leading ones
is two.

We will consider the 32 bit data, but the solution that we
will present here is applicable to data length of 4k bits, for 4 ≤
k ≤ 16. We will explain the switching network design, which
for 32 bit data, under our choice, counts leading ones or zeros.

Let us divide the 32 bit data X(31:0) to 4 bits nibbles. In this
data bit 31 is MSBit and bit 0 is LSBit.

X:31÷28 | 27÷24 | 23÷20 | 19÷16 | 15÷12 | 11÷8 | 7÷4 | 3÷0
 p0,V0 p1,V1 p2,V2 p3,V3 p4,V4 p5,V5 p6,V6 p7,V7
 s0,Z0 s1,Z1 s2,Z2 s3,Z3 s4,Z4 s5,Z5 s6,Z6 s7,Z7

Labels below nibbles, pi and si , 0 ≤ i ≤ 7, denotes logical
products (AND operation) and complements of logical sums
(NOR operation) of data bits in ith nibble, and Vi and Zi
denotes count of leading ones and zeros in that nibble.

General expression for pi is
pi = x31-4i⋅x31-(4i+1)⋅x31-(4i+2)⋅x31-(4i+3) , i=0,1,...,7 (1)

TABLE I Boundary nibble encoding as function of products

Values of logical products

Ordinal
numb. of
boundary
nibble, n

Count of
leading
ones, m

Selector
bits to
mux

y2 y1 y0

p0=0 0 0 ÷ 3 0 0 0
p0=1, p1=0 1 4 ÷ 7 0 0 1
p0⋅p1=1, p2=0 2 8 ÷ 11 0 1 0
p0⋅p1⋅p2 =1, p3=0 3 12 ÷ 15 0 1 1
p0⋅p1⋅p2⋅p3 =1, p4=0 4 16 ÷ 19 1 0 0
p0⋅p1⋅p2⋅p3⋅p4 =1, p5=0 5 20 ÷ 23 1 0 1
p0⋅p1⋅p2⋅p3⋅p4⋅p5=1, p6=0 6 24 ÷ 27 1 1 0
p0⋅p1⋅p2⋅p3⋅p4⋅p5⋅p6=1, p7=0 7 28 ÷ 31 1 1 1
p0⋅p1⋅p2⋅p3⋅p4⋅p5⋅p6⋅p7=1 - 32 0 0 0

In Table 1 the expression in column “Values of logical

products” contains expressions which determine the ordinal
number of nibble, counting from zero from left to right, in
which continuous string of ones terminates, followed by first
zero. Such nibble we will call boundary nibble. In this column
character “⋅” designates AND operation. The last table’s row
refers to the data with number of ones equal to the length of
data, in this case 32. In the column “Number of leading ones”
are shown the ranges of possible numbers of leading ones for
these conditions. These numbers of leading ones can be found
as the sum of values 4n and Vn, where 0 ≤ n ≤ 7 is the ordinal
number of boundary nibble with one or more zeros, and Vn is
the number of terminal ones in this boundary nibble. For
example, in datum

1Nebojsa Z. Milenkovic is with the Faculty of Electronic
Engineering, Aleksandra Medvedeva 14, 18000 Nis, Serbia and
Montenegro, E-mail: nmilenko@elfak.ni.ac.yu

2Vladimir V. Stankovic is with the Faculty of Electronic
Engineering, Aleksandra Medvedeva 14, 18000 Nis, Serbia and
Montenegro, E-mail: svlada@elfak.ni.ac.yu

1111 1111 1111 1100 1001 1111 0111 1000

403

the first three nibbles contain only ones, while the fourth
nibble beside two ones also contains two zeros. That’s why
the nibble with ordinal number three is boundary nibble, with
two terminal ones, thence n = 3 and Vn = 2, and the number of
leading ones is m=14.

m = 4n + Vn (2)

Last column of Table I encodes ordinal number of boundary
nibble from second column, and will be used as the selector
bits to multiplexor MUX 1 and MUX 2 in the network
presented in Figure 3.

Because the values of n in range 0 – 7 are multiplied by 4,
and Vn can have values in range 0 – 3, multiply operation n by
4 and adding Vn can be substituted by concatenation of three
bits of n and two bits of Vn.

From first and fourth columns of Table I we can get
following expressions for y2, y1, and y0:

)ppp(ppppp)ppp(py

(3))pppppp(pp

ppppppppy

7654321032100

765432101

765432102

+++=

⋅+=

=

y

In fact, columns 1 and 4 of Table I define function of
priority encoder with eight input lines and three output lines,
as can be seen in standard integrated circuits families.

Dependence of the number of leading ones in the boundary
nibble, which contains less then four ones, is presented in
Table II. The last table’s row is an exception, because it
represents the case when the nibble is not boundary. To
simplify bit’s labels we have introduced index k, k = 31-4i,
i=0, …, 7. Value Vi= {vi

1 vi
0} represents this number of

leading ones in binary. From this table logical expressions for
vi

1 and vi
0 are:

)xxx(xv

xxxxv

3k2-k1kk
i
0

3-k2-k1kk
i
1

−−

−

⋅+⋅=

⋅⋅⋅= (4)

Number of leading zeros can be

found by the same way if for
every nibble we take NOR logical
operation on their bits:

(5) 0,1,..,7i ,xxxxs 3)(4i312)(4i311)(4i314i31i =+++= +−+−+−−

Then si =1 indicate that ith nibble contains all zeros. As with
counting leading ones, ordinal number of boundary nibble and
range of count of leading zeros in relation to values of si can
be presented as in Table I, with only one difference: in first
column, instead of products of pi, in that table must stand
products of si, 0≤ i ≤7. Insufficient space and only that
difference are reasons why we don’t present such table for
leading zeros.

Dependence of the number of leading zeros in the boundary
nibble, which contains less then four zeros, is presented in
Table III. The last table’s row is an exception, because it
represents the case when the nibble is not boundary. Value

Zi= {zi
1 zi

0} represents this number of leading zeros in binary.
From this table logical expressions for zi

1 and zi
0 are:

)xxx(xz

)x(xxxz

3-k2-k1kk
i
0

3k2k1kk
i
1

⋅+⋅=

+⋅⋅=

−

−−− (6)

Values in columns 2 to 4 of
Table I and analogous table for
leading zeros are equal, and in
column 1 they differ only by
using AND or NOR operation
on nibble’s bits in data. This
suggests that logical function
y2, y1 and y0 in both tables can
be implemented by the same
combinatorial network, with
inputs pi for leading ones and si
for leading zeros. Let qi be the

input signal to that network with values:

.

.

.

.

.q0 Q

q4

q6q7

q5

q3

q2

y2

q1

y1

y0

..
. ...
.
...
.

.
.

.

Fig. 1. Scheme of BNE network

Xk

NCNi

pi

v1
i

z1
i

v0
i

z0
i

si

Xk-1

Xk-2

Xk-3

.
.
.

..
.
...

..
...

.

.

.

Fig. 2. Scheme of NCNi network

TABLE II Encoding leading
ones in boundary nibble

xk xk-1xk-2xk-3 vi
1 vi

0
0 x x x 0 0
1 0 x x 0 1
1 1 0 x 1 0
1 1 1 0 1 1
1 1 1 1 0 0

TABLE III Encoding leading
zeros in boundary nibble

xk xk-1xk-2xk-3 zi
1 zi

0
1 x x x 0 0
0 1 x x 0 1
0 0 1 x 1 0
0 0 0 1 1 1
0 0 0 0 0 0

404

qi = pi for counting leading ones,
qi = si for counting leading zeros.
Combinatorial network which implements the switching

functions yj = fj(q0, q1, …, q7), j= 2, 1, 0, is shown in Figure 1.
In addition, this network implements the logical product
Q=q0⋅q1⋅q2⋅q3⋅q4⋅q5⋅q6⋅q7 , which by value 1 signalizes that the
datum in all eight nibbles has all ones or zeros.

Figure 2 shows the network which implements switching
functions pi and si from expressions 1 and 5 respectively, and
zi

1,zi
0 and vi

1,vi
0 from expressions 4 and 6 respectively.

Finally, Figure 3 shows the complete block scheme of the
leading ones/zeros counter. Blocks NCN0 ÷ NCN7 contain
logical networks shown in Figure 2, and block BNE
(Boundary Nibble Encoder) logical networks shown in Figure
1. LZLO/ selects counting leading ones or zeros. Stout line
on leading ones/zeros counter’s output represents grouping of
one output line Q from BNE network, three lines from MUX1
and two lines from MUX2, which carry bits 5, 4:2 and 1:0 of
the leading ones/zeros count’s six bits.

This solution can be extended for counting leading
ones/zeros in 64 bit data as follows. Let the network presented
in Figure 3 with outputs “Number of leading ones/zeros (0-
32)” be one module with outputs NLO/Z (bits 4:0) and Q.
Two such modules are connected to the outputs of 64 bit
register X as is presented in Figure 4. Signal QH=0 shows that

data bits 63 to 32 contains not only ones (zeros), and the count
of leading ones (zeros) in range 0÷31 is determined by
00||NLO/ZH . Here 00 are two most significant bits, and
NLO/ZH gives five lower bits in the seven bits count of
leading ones/zeros. The sign || is concatenation. When QH=1
and QL=0, most significant 32 data bits are only ones (zeros),
and 32 lower data bits contains ones and zeros. The number of
leading ones (zeros) is in the range 32÷63, and is determined
by 01||NLO/ZL . Finally, for QH=1 and QL=1 all data bits are
ones (zeros), and the number of leading ones (zeros) is 64.
These values are written in the third column of Table IV.
They are put on MUX’s data input lines as presented in Figure
4, and MUX’s seven output lines give us the number of
leading ones/zeros in the range 0-64.

TABLE IV Forming results with output multiplexer

QH QL

Number
of leading
ones/zeros

The way of
forming

MUX’s
select
inputs:
r1 r0

MUX’s
data
input
lines

0 x 0 ÷ 31 00||NLO/ZH 0 0 0

1 0 32 ÷ 63 01||NLO/ZL 0 1 1

1 1 64 1000000 1 0 2

X 31.....28 27.....24 23.....20 19.....16 15.....12 11..... 8 7 4 3 0

 2 1 0y y y

M
U
X
1

Number of leading
 ones/zeros (0-32)

0

Q

1
2
3
4
5
6
7

3

3

6bits 1,0

bit 5

bits 4,3,2

2

2

000

011

110
111

101
100

010
001

BNE

LO/LZ

NCN0 NCN1 NCN2 NCN3 NCN4 NCN5 NCN6 NCN7

MUX2
0 1 2 3 4 5 6 7

. ..

.......
p s0 0 V Z0 0

4

p s1 1 V Z1 1

4

p s2 2 V Z2 2

4

21 0

1 0
MUX

MUX 21 0

1 0
MUX

MUX 21 0

1 0
MUX

MUX 21 0

1 0
MUX

MUX 21 0

1 0
MUX

MUX 21 0

1 0
MUX

MUX 21 0

1 0
MUX

MUX 21 0

1 0
MUX

MUX

p s3 3 V Z3 3

4

p s4 4 V Z4 4

4

p s5 5 V Z5 5

4

p s6 6 V Z6 6

4

p s7 7 V Z7 7

4

Fig. 3. Block scheme of leading ones/zeros counter in 32-bit data

405

X 3132

NLO/ZH NLO/ZL QLQH

r1

r0

63 0
32 32

Number of
 leading
ones/zeros
 (0-64)

M
U
X

0

1

2

5

2

2

5 77

7
00

01
1000000 7

..

.LO/LZ

406

Fig. 4. Block scheme of leading ones/zeros counter in 64 bit
data

III. PERFORMANCE EVALUATION

As the building block of microarchitecture of contemporary
processors, proposed leading ones/zeros counter must satisfy
required performance level. In performance evaluation we are
considering only the time delay through the proposed leading
ones/zeros counter. In the context of discussions of logic
delays, the FO4 metric is used by processor architects as a
process neutral metric that can be applied to abstract design
and architectural discussions. So, we are using FO4
(equivalent) gate delays as a measure [6], which is simply the
delay through an inverter that has to provide the output drive
current sufficient to drive 4 other inverters of comparable
sizes. In addition, it must be counted the maximal number of
level of logical circuits in the considered network. This
number of level then must be multiplied with the delay time
per logical circuit to find the delay time through the entire
network.

In the network in Figure 3 signals propagate through the
following blocks: NCNi, MUX, BNE, (MUX1, MUX2 in
parallel). From Figures 1 and 2 the maximal numbers of levels
for NCNi and BNE are 4 and 5 respectively. For MUX below
NCNi blocks we find 3 logic levels, and for MUX1 we find 4
logic levels. Adding these numbers gives 16 logic levels. With
FO4 gate delay of 25 ps for 0.18μm process technology [6],
the delay time for the proposed leading ones/zeros counter for

32 bit data is 16×25=400 ps. For 64-bit leading ones/zeros
counter to this time delay must be added time delay through
MUX select logic r1r0 and MUX, with 2+3=5 logic level, and
additional 5×25=125 ps. For the whole 64-bit leading
ones/zeros counter time delay is 525 ps. Of course, with
contemporary process technology with shorter FO4 per gate
delay time, the performance presented here is even better.

IV. CONCLUSION

Systematic design of leading ones/zeros counter is
presented in this paper. Although example design presented
here is for 32 bit data, the methodology used for them is
applicable to design of leading ones/zeros counter for data
length of 4k bits, for 4 ≤ k ≤ 16.

The advantages of this leading ones/zeros counter are:
- choice to count leading ones or zeros,
- relatively little quantity of logic circuits attained by using
common logic blocks (BNE, MUX1, MUX2) for counting
leading ones and zeros,
- modular design which enables simple upscaling for longer
data,
- short time delay, with little additional delay with upscaling.

REFERENCES

[1] V.G.Oklobdzija, “An Algorithmic and Novel Design of a
Leading Zero Detector Circuit: Comparison with Logic
Synthesis“, IEEE Trans. VLSI Systems, vol. 2, no1, March
1994., pp. 124-128.

[2] M.S.Schmookler and K.J.Novka, “Leading Zero Anticipation
and Detection- A Comparison of Methods“ Proc. 15th IEEE
Symposium on Computer Arithmetic, 2001, pp. 7-12.

[3] F. Arakawa, T. Hayashi, and M. Nishibori, “An Exact Leading
Non-Zero Detector for a Floating-Point Unit”, IEICE Trans.
Electron., vol.E88–C, no.4 April 2005, pp.570-575.

[4] M.Ott,”Optimized method and apparatus for parallel leading
zero/one detection”, US Patent #6697828B1, Feb. 2004.

[5] S.-H.Yin,M.K.Gowan,”High speed leading or trailing bit value
detection”, US Patent #7012965B2, Mar. 2006.

[6] D.T.Wang,”Revisiting the FO4 metric”,
http://www.realworldtech.com/page.cfm?ArticleID=
RWT081502231107&p=2

http://www.realworldtech.com/page.cfm?ArticleID

