

Evaluation of CELL IBM Platform Regarding
Development of Advanced Real-Time Video Algorithms

Nemanja Lukić1, Istvan Papp2, Zoran Marčeta3, Dušan Ačanski4, Miodrag Temerinac5

Abstract – This paper presents the evaluation of
programmable platforms regarding development and
implementation of advanced real-time video algorithms as well
as benchmark of such solutions vs. hardware implementations.
Evaluation is done using video processing framework and
implementation of appropriate video algorithms on CELL IBM
platform.

Keywords – CELL IBM platform, real-time, advanced video
algorithms1 2 3 4 5

I. INTRODUCTION

Due to increased presence of digital content (multimedia
systems, internet streaming) demand for advanced real-time
video algorithms has emerged. Main characteristic of real-
time video processing is great amount of data that needs to be
processed in a given time interval. Evolution and
advancement of integrated circuits made possible further
rising of hardware processing power. This enabled practical
implementation of theoretical advancement in field of video
processing algorithms.

Realization of advanced real-time video algorithms is
possible in two different ways:

1. Software realization on programmable platforms
2. Hardware realization in programmable hardware

components like FPGA (Field-Programmable Gate
Array)

Advantage of first approach is shorter period between
achieving theoretical results and their practical realization.
Main flaw of this approach is that it demands hardware
platform with great processing power that is able to execute
realized software solution in real-time.

Main advantage of second approach (hardware realization)
is that it doesn’t demand hardware platform with high
processing power. But its main flaw is longer period between
achieving theoretical results and their practical realization due
to restriction introduced by development and hardware
implementation of advanced video algorithms. These

1 Nemanja Lukić, Faculty of Technical Sciences, Trg D.

Obradovića 5, 21000 Novi Sad, Serbia, E-mail:
nemanja.lukic@micronasnit.com

2 Istvan Papp, Faculty of Technical Sciences, Trg D.
Obradovića 5, 21000 Novi Sad, Serbia, E-mail: papp@uns.ns.ac.yu

3 Zoran Marčeta, Faculty of Technical Sciences, Trg D.
Obradovića 5, 21000 Novi Sad, Serbia, E-mail:
zoran.marceta@micronasnit.com

4 Dušan Ačanski, MicronasNIT, Fruškogorska 11a, 21000 Novi
Sad, Serbia, E-mail: dusan.acanski@micronasnit.com

5 Miodrag Temerinac, Faculty of Technical Sciences, Trg D.
Obradovića 5, 21000 Novi Sad, Serbia, E-mail:
miodrag.temerinac@micronasnit.com

restrictions reflect in necessary algorithm translation into
language suitable for hardware implementation (Hardware
Description Language). From the beginning of hardware
implementation any changes made to algorithms at theoretical
level will cause delay, because the hardware interfaces can not
be easily changed from that moment. This aspect also
represents bottleneck of hardware because these changes are
often in phase of development and verification.

Video processing and other multimedia applications belong
to market segment where short development and
implementation time and low cost of final product present
main objectives. Software implementation approach offers
short period for developing and implementation. Appearance
of hardware architectures like CBEA (Cell Broadband Engine
Architecture, [1]) offers new approach to development of
complex algorithms such as advanced video algorithms. This
architecture offers toolkit that lets programmer to implement
algorithm in software in fast and efficient way on price
attractive platforms. Also, this architecture offers sufficient
processing power for real-time implementation. TABLE
compares processing power of CBEA based processor with
two the most powerful FPGA modules ([5] and [6]).
Processing power is expressed in GMACS (Giga Multiply and
ACcumulate) instructions because these instructions are used
often in field of signal processing.

For this evaluation, algorithms for video improvement are
chosen as especially desired applications in processing power
and data communication. It includes algorithms for de-
interlacing, scaling, up-sampling, contrast and brightness
adjustment [4].

TABLE I - COMPARATIVE REPRESENTATION OF CBEA AND

FPGA BASED ARCHITECTURES PROCESSING POWER

Manufacturer Product Frequency Price Processing power
(GMACS)

IBM Cell ~3 GHz ~$90 204

Altera Stratix III 550 MHz $400 211

Xilinx Virtex V 550 MHz $457 352

Goal of this paper is evaluation of CBEA based architecture

regarding development and implementation of advanced real-
time video algorithms in terms of complexity, efficiency and
flexibility.

II. PLATFORM DESCRIPTION

CBEA presents architecture of microprocessors dedicated
to distributed data processing. CBEA describes
microprocessor that could be either single chip module or

407

multi chip module. Fig. 1 presents architecture of processor
based on CBEA.

Fig. 1 - Architecture of processor based on CBE (Cell

Broadband Engine) architecture

CBEA describes 4 different functional entities of processor:
1. PowerPC Processing Element (PPE, [7])
2. Synergetic Processing Element (SPE)
3. Memory Flow Controller (MFC)
4. Internal Interrupt Controller (IIC)

Component that connects these functional entities inside of
processor is EIB (Element Interconnect Bus). Regarding that
CBEA is open architecture, number of entities inside
processor is variable and could depend on demands and
characteristics of system being developed.

III. ALGORITHMS FOR VIDEO IMPROVEMENT

Selected algorithms for this paper represent a standard
video processing that is present in every TV device available
on market. Algorithms are also representative examples for
complex and data intensive calculations. Realized algorithms
are de-interlacing, scaling, up-sampling, contrast and
brightness adjustment.

De-interlacing is the process of converting interlaced video
into a non-interlaced (progressive) video. Chrome upsampling
is the process of increasing the sample rate of input video
chrome components. In this realization it represents
conversion from YUV 4:2:2 to YUV 4:4:4 color format.
Vertical scaling is process of increasing vertical resolution of
input video. In this realization this process is done using
polyphase interpolation. Horizontal scaling is process of
increasing horizontal resolution of input video. In this
realization this process is also done using polyphase
interpolation. YUV to RGB conversion is process of
converting color space of input video from YUV to RGB
color space. Contrast and brightness adjustment is process of
adjusting contrast and brightness of input video. It is done in
RGB color space. Limiting and formatting is process of
preparing video sequence for displaying.

IV. REALIZATION DESCRIPTION

Two modules are distinguished during realization of real-
time video processing framework on CBEA platform. First
module represents system software that handles input/output
of the system (input video data, user parameters and

processing results). Second module represents video
processing itself.

Real-time video processing framework is divided into two
parts regarding to hardware characteristics of CBEA based
architecture:

1. Software module executed on PPU
2. Software module executed on SPU’s

PPU software module is real-time video processing
framework. It is a Linux application that accepts user
parameters and according to them creates video processing
chain. It also controls input devices (keyboard and PS3
controller). Fig. 2 presents structure of video processing
framework (outlined in blue color) and video processing chain
(outlined in red color). Video processing framework input is
video sequence (compressed or uncompressed. Size of input
video sequence is restricted to SD (720x576 or 720x480 pixel
per frame) because of the nature of realized algorithms in
video processing module. Video processing framework also
provides utility for interactive control of framework and
realized video algorithms. Results generated by video
processing module can be presented on display or written to
file, depending on user defined configuration. File writing is
primary used during video algorithms verification process.

SPU software module is responsible for realization of
selected real-time video algorithms. Fig. 2 also presents list of
realized video processing blocks and their SPU assignment.
The last SPU processor in processing chain writes his results
into video memory of hardware platform.

Fig. 2 - Video processing framework and chain structure

PPU processor starts video processing by sending message

into inbound mailbox of first SPU element in chain of SPU
elements that process video data. Last SPU processor in chain
signals end of frame processing to PPU processor by insertion
of an adequate message into own outbound mailbox. Data
stored into outbound mailbox indicates number of processor
cycles that processor executed during processing of single
video frame and can be used to calculate exact time (cycle
precise) required for processing single video frame.

Fig. 3 presents system data flow. First SPU element in
video processing chain (after receiving message from PPU)
starts data processing by fetching necessary video data
prepared by PPU from main (system) memory. After
processing first block of input data, it passes processed block
of video data to the next SPU element in the chain. Last SPU

408

element in the chain passes processed video data to main
memory (or directly to video memory) depending on user’s
system configuration.

Fig. 3 - System data flow

On every SPU element special mechanism for data

acquisition is implemented. This procedure is mandatory due
to fact that every SPU element has limited amount of local
memory (256 KB of local uniform memory dedicated to data
and instructions). Regarding to the fact that whole frame/field
even at PAL SD resolution (720x576 pixels per frame or
720x288 pixels per field) can’t fit into local memory of one
SPU element, synchronization techniques and mechanism of
line buffers are developed.

V. MEASUREMENT DESCRIPTION AND ACHIEVED
RESULTS

Performance measurement of video processing blocks is
carried out in three different phases of video processing
framework implementation on CELL IBM platform.
Measurement of achieved performance for each video
processing block is performed using IBM system simulator.

First measuring step is measuring of performance achieved
when each video processing block is implemented on PPU
processor. All video processing blocks are sequentially
executed on single processing core (PPU) and represent
function calls of realized video algorithm. This phase
simulates execution of video algorithms on platforms based
on general purpose processors, regarding that PPU core
represents one kind of general purpose processor.

After this phase, scalar implementation of video processing
blocks is executed on SPU processing core. Scalar
implementation represents type of processing where single
operand (in this case pixel) is processed using single
instruction (SISD, single instruction single data). For every
block of video processing chain, single SPU core is reserved.
In this phase each SPU core and entire system performances
are measured.

After that, the scalar implementation is being vectorised
([3]) and optimized. Performances of vectorised and
optimized implementation in final system are measured.

PPU scalar implementation represents realization of scalar
functions set that execute appropriate video algorithm.
Measuring is realized for each function. Video processing
module itself is implemented as sequential calls of realized
functions. During execution of video processing chain, each
video processing function is called with parameters that are
passed on by video framework.

Special system for parameter forwarding is realized,
regarding that function parameters are passed on by video
framework before each field/frame is processed. TABLE
represents achieved processing time of each scalar function of
video processing chain executed on PPU processor (expressed
in ms).

TABLE II - MEASURED PROCESSING TIME OF PPU SCALAR

IMPLEMENTATION OF VIDEO PROCESSING BLOCKS

Block name Achieved
processing time

De-interlacing 1.761
Chrome upsampling 30.844

Vertical scaling 352.522
Horizontal scaling 1880.122

YUV to RGB conversion 176.989
Contrast and brightness adjustment 20.924

Limiting and formatting 10.196

Scalar implementation on SPU processors represents
realization of scalar functions set on corresponding SPU
processor. This approach’s main property is that the blocks of
video processing are executed on single processor. This
property caused implementation of necessary communication
mechanism between SPU processors. Measuring is realized on
each SPU processor.

TABLE represents realized time of video processing scalar
functions on single SPU processor (expressed in ms). It is
obvious that realized time is comparable to results achieved
on PPU processor, or even worse. These results are expected
and can be explained by fact that synchronization between
video processing blocks (demanded by SPU processors
implementation) doesn’t exist in realization on PPU
processor.

TABLE III - MEASURED PROCESSING TIME OF SPU SCALAR

IMPLEMENTATION OF VIDEO PROCESSING BLOCKS

Block name Achieved
processing time

De-interlacing 4.6 (SPU 0)
Chrome up sampling 32.171 (SPU 1)

Vertical scaling 381.712 (SPU 1)
Horizontal scaling 2035.8 (SPU 2)

YUV to RGB conversion 228.33 (SPU 3)
Contrast and brightness adjustment 24.698 (SPU 3)

Limiting and formatting 34.43 (SPU 3)

Also, SPU processor is not optimized for scalar functions,

regarding that instruction set of SPU processors consists only
of vectorised instructions (SIMD, Single Instruction Multiple
Data, [3]). SPU processor’s registers are 128-bits and
optimized for SIMD instructions. Compiler used for
translation of scalar implementation must generate extra
instructions to accomplish this translation. These extra
instructions explain worse results of scalar implementation on
SPU processor compared to implementation on PPU
processor.

Vectorised implementation on SPU processors represents
realization of vectorised functions group on corresponding
SPU processor. Vectorising of functions implies translating

409

410

TABLE IV - MEASURED PROCESSING TIME OF SPU VECTORISED

scalar implementation into implementation which can be
realized on vector processor. This process is realized in C
programming language using language extensions for SIMD
architecture of SPU processor. TABLEIV represents achieved
time of video processing vector functions (expressed in ms).

IMPLEMENTATION OF VIDEO PROCESSING BLOCKS

Block name Achieved
processing time

De-interlacing 0.25 (SPU 0)
Chrome upsampling 0.788 (SPU 1)

Vertical scaling 1.970 (SPU 1)
Horizontal scaling 10.510 (SPU 2)

YU n V to RGB conversio 6.198 (SPU 3)
Con ent trast and brightness adjustm 2.756 (SPU 3)

Limiting and formatting 1.983 (SPU 3)

The frequency of field/frame processing in single
im

 (1)
Where F stands for processing frequ

an

U
im

plementation is calculated using following formula:
MF /1=

ency (expressed in Hz),
d M stands for maximum time needed to process single

field/frame of input video sequence (expressed in ms).
Maximum single field/frame processing time in scalar PP
plementation represents summation of times needed to

realize all processing blocks in video processing chain
because target hardware architecture (CBEA) has single PPU
processor, which makes impossible parallelization of video
processing chain on PPU. Maximum single field/frame
processing time in scalar and vectorised SPU implementation
represents time needed to realize the most time demanding
(the longest) video processing block in video processing
chain, regarding that the blocks are realized simultaneously on
different SPU cores. Fig. 4 shows achieved frame rate in
different implementations described in previous section.

0.00

20.00

40.00

60.00

80.00

100.00

0.41 0.49

95.15

Ac
hi

ev
ed

 fr
am

e r
at

e i
n d

iff
er

en
t

im
pl

em
en

ta
tio

ns
 (i

n s
)

Maximum achived frame rate in different
implementations

Scalar implementation on PPU
Scalar implementation on SPU
Vectorised implementation on SPU [2]

Fig. 4 - Achieved frame rate in different implementat on

Scalar implementation on SPU processor achieved bet
pe

 CELL processor is 200 times
m

ism on algorithmic level (different blocks of

rocessing level (usage of SIMD

VI. CONCLUSION

Advanced video algorithms development using software
im

 system described in
th

ent using systems
ba

REFERENCES

[1] Cell Broadband Engine Architecture, IBM, 2007

IBM,

 Demystified, Fifth Edition: A Handbook for the Digital

P Features
rview/archit

rm FPGA
cts/silicon_solutions/fpgas/v

[8] k, Cell SDK 2.1, IBM, 2007

i [3s

ter
Engineer”, rformance comparing to scalar implementation on PPU

processor. This can be explained by fact that in scalar SPU
implementation video processing blocks are executed
simultaneously on different SPU processors. The difference
between these implementations is inconsiderable due to fact
that the most time demanding video processing block
(horizontal scaling) is multiple times more demanding
compared to other video processing blocks. This explains why

parallelization of processing blocks doesn’t achieve greater
acceleration of realized system.

Vectorised implementation on
ore efficient comparing to implementation of same

algorithms on general purpose processor. This result on CELL
processor is possible due to fact that it offers parallelization at
two levels:
• Parallel

realized algorithm could be simultaneously executed on
different SPU cores)

• Parallelism on data p
instruction set enables processing of up to 16 data using
single processor instruction)

plementation on systems based on CBEA represents easy
and practical solution. There are two commercially available
platforms based on this architecture (Sony Playstation 3 and
QS-20 Blade Servers). These platforms offer enough
processing power to perform even the most complex video
processing algorithms in real-time (in this paper SD input
sequence in over 95 frames per second).

Fig. 4 presents achieved frame rate in
is paper. In this realization 50% of CELL processor

resources were used, due to the fact that only 4 SPU cores
were involved (CELL processors currently available on
market have 8 SPU cores). Realization on general purpose
processor (PPU) used 100% of its resources. For real-time
performance in this paper, frequency of 60 Hz is needed.
Vectorised implementation on CELL processor achieves
frequency that is 58% greater than frequency required for real-
time performance while implementation on general purpose
processors is well below this frequency.

Advanced video algorithm developm
sed on CBEA represent practical solution due to fact that

CELL SDK toolkit ([2]) offers mechanisms for fast and
efficient development of this system’s applications. This
significantly shortens time from algorithm changes until real-
time demo comparing to hardware implementations.

 Software Development Kit 2.1, Cell SDK 2.1, IBM, 2007
] C/C++ Language Extensions for CBEA, Cell SDK 2.1,

2007
[4] "Video

Keith Jack, Elsevier, 2007
[5] Stratix III FPGA High-Performance DS
[6] http://www.altera.com/products/devices/stratix3/ove

ecture/st3-dsp.html
[7] Virtex-5 Multi-Platfo

http://www.xilinx.com/produ
irtex/virtex5/index.htm
PowerPC Architecture Boo

http://www.amazon.com/exec/obidos/search-handle-url/103-4074585-5469455?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Keith%20Jack

