

Performing OLAP Operations in Data Cube with
Dimensions Having Irregular Hierarchical Relationships

Anna G. Rozeva1

Abstract - OLAP provides for analysis of large collections of

historical factual data aggregated by the levels of hierarchically
structured dimensions. In case that a hierarchy is irregular
aggregation results will be incorrect. Algorithms for rendering
irregular hierarchies summarizable thus ensuring correctness of
aggregations are proposed. Mechanism for performing basic
OLAP operations in relational environment is designed.

Keywords – OLAP, Data cube, Summarizability, Hierarchy

transformation, OLAP operations

I. INTRODUCTION

On-Line Analytical Processing (OLAP) systems aim to ease
the process of extracting useful information from large
amounts of detailed transactional data. The modeling
approach that fits most naturally to data analysis problems is
the multidimensional one. It provides for fast, consistent,
interactive access to a wide variety of possible views of
information, automatic application of pre-specified
aggregation functions, visual querying and good query
performance due to the use of pre-aggregation [6].
Multidimensional view is captured in several data models
referred to as cube models or data cubes [3], [8]. Data is
examined as n-dimensional cube. It’s divided into measures
(facts) on which calculations are performed and dimensions
that characterize them. Each dimension has a number of
attributes that can be used for selection and grouping. Typical
OLAP queries involve calculating aggregations from large
amounts of measure data. Aggregations are performed on
dimensions that are organized along hierarchy levels. Cube
models differ depending on whether relationships between
hierarchy levels are captured explicitly or not by the scheme.
A hierarchy that is explicitly captured in the scheme provides
better guidance for navigating the cube.

Quick access to aggregated measures is provided by pre-
computing and storing them. Several types of pre-aggregation
can be implemented that differ in the query response time.
Fastest response time is provided by pre-computing and
storing aggregations for all possible combinations of
dimensions’ values. The storage requirements in this case
grow rapidly resulting in data explosion.

1Anna G. Rozeva is with the University of Forestry, Faculty of
Business Management, Kliment Ohridski 10, 1756 Sofia, Bulgaria,
E-mail: arozeva@ltu.bg

It occurs because the number of possible aggregation
combinations increases fast with the increase of the number of
dimensions. The sparseness of the multidimensional space

decreases in higher dimension levels. Thus the space taken by
aggregates at higher levels almost equals the one of lower
levels. Another approach deals with selecting a subset of
aggregation levels to pre-compute and obtaining aggregates
for the upper levels on the fly from the pre-computed ones.
The technique is referred to as summarizability [4]. The
hierarchy structure should provide for correctness of
aggregations obtained along dimension hierarchy levels. One
aspect of incorrect aggregation is double-counting of data. It
occurs in case of many-to-many relationship between fact and
dimensions or dimension members being part of more than
one higher level. Another aspect of incorrect aggregation
consists in not counting data. This occurs if measure value is
not present at the lowest hierarchy level or when the fact-to-
dimension mapping has varying granularity. These problems
occur with non-summarizable dimension hierarchies.
Hierarchy properties and transformation techniques for
achieving summarizability are discussed in [1], [2], [7].

Our work concerns design and implementation of
mechanism for obtaining correct aggregations in a relational
OLAP environment since relational technology turns out to be
the most commonly used platform for OLAP applications and
the major relational data base management systems (RDBMS)
use pre-aggregated data for enhancing query response times.
The aspects discussed are:
♦ Summarizability violations;
♦ Implementation of summarizability in the data cube

scheme;
♦ Performance of OLAP operations on summarizable

hierarchies.
Further on in the paper irregularities in hierarchies and

procedures for obtaining summarizability are examined.
Technique for pre-computing aggregations along hierarchies
with ensured summarizability by means of standard relational
technology is designed. Finally procedures for implementing
summarizable pre-aggregations in OLAP operations are
presented.

II. CASE STUDY WITH SUMMARIZABILITY
VIOLATIONS

Summarizability is an important cube property. It states
when lower-level aggregates being pre-computed can be used
to calculate higher-level aggregates as well as when they are
to be computed from source base data. An aggregate function
is summarizable if aggregated results from lower level
aggregates when combined give the same result as when the
aggregate is derived directly from base data. As calculation of
aggregates from base data increases significantly the
computation cost it’s important to ensure summarizability

411

along cube dimensions. Summarizability is achieved by
proper ordering of dimension values in hierarchy levels. The
ordering is referred to as strict and covering [4], [8]. A
dimension hierarchy is strict if no member has more than one
parent from the same level. It’s covering if no path skips a
level. This implies that dimension hierarchies should be
balanced trees. If this isn’t fulfilled some lower level values
will be either double counted or not counted at all.

A case study concerning wood retail business is examined.
The data cube is shown by diagram with UML notation in
Fig.1.

Fig.1. Wood retail business – UML diagram

For the purposes of investigation concerning hierarchy

structure and summarizability the examined fact Orders is
characterized by only two dimensions, i.e. Forestry and
Customer and single measure Quantity. Forestry states the tree
name, the wood kind (conifer / broad-leaved) and the place it
was cut. The following summarizability violations are present:

1. Not-counting Orders
♦ Customer dimension - Orders of Customers whose

Addresses aren’t in a City when aggregating at City level;
♦ Forestry dimension – Orders made for Wood kind

when aggregating at Tree level;
2. Double-counting Orders – Forestry dimension when

aggregating at Wood kind level as Wood may be cut from
several Forestry.

III. MANAGING SUMMARIZABILITY VIOLATIONS

Our previous work on hierarchy irregularities,
transformations and hierarchy normalization is presented in
[1] and [2]. What is treated here concerns summarizability
violations in the data cube scheme. The approach
implemented deals with designing metadata for dimension
hierarchy structure that provides for summarizability. This is
achieved by modifying the initial hierarchy for resolving non-
counting and double-counting violations. Metadata is

designed in relational environment. The level ordering of a
dimension with parent-child relationships is defined by
structure table – Table I. Parent and Child fields mean
identifiers of members of the dimension table.

TABLE I
DIMENSIONAL HIERARCHY STRUCTURE TABLE

Parent Child Type CLevelId

Top-level members have CLevelId = 0. Type column holds

1 for real Parent and 0 for artificially defined one. Metadata
table may be generated by exploring the dimension tables as
shown in [2] or may be explicitly defined by user. Handling
non-counting violations implies eliminating paths that skip
levels like the one in the Customer dimension and ensuring
that all non-bottom level members have children. This is the
case with the Forestry dimension when examining sawdust
that is of no specific Tree. Algorithms for handling
hierarchical irregularities are presented in [7]. Our approach
corresponds to the structure of the metadata table with
hierarchy levels explicitly stated. This facilitates hierarchy
exploration for multiple paths and childless non-bottom level
members. In the case study diagram members from the
address level may skip the city level and connect to district
directly, i.e. customer’s address is not in a city. The algorithm
for handling skipping level paths inserts artificial members at
the skipped level and the metadata table is modified
accordingly. It’s shown in Fig.2.

Fig.2. Handling non-counting violation due to skipping paths

The algorithm explores dimension metadata table by levels.
For each level member starting from bottom level it identifies
its parents and gets their levels (the find statements). In case
that a parent found is at level with number smaller than the
one of the upper adjacent level modification of the metadata
table is performed. Two rows are inserted – one for the child
member being examined with parent having the same value
and 0 in the Type field. This row holds the link of the child
member to its upper adjacent level. The values for parent and
child fields are the same for keeping the original values in the
newly created links. Another row is inserted which holds the

412

link of the artificial parent to the child’s real parent. Finally
the row holding the skipping level path is deleted. The
procedure is recursively called until hierarchy top level is
reached. The metadata table structure proposed facilitates
hierarchy transformation by eliminating join operations in
case of hierarchy level relationships being kept in separate
tables.

 Algorithm is designed for managing summarizability
violations concerning non-counting measures due to the
presence of childless non bottom-level members. In the
Forestry dimension of the case study wood kind may not have
associated tree. The algorithm is shown in Fig.3.

Fig.3. Handling non-counting violation due to childless members

Starting from top level the algorithm looks for children of
level members. In case that they are missing rows are inserted
into metadata table with artificial children and parents
respectively and 0 as type value until bottom level is reached.
The rows inserted have the same values for parent and child
thus making possible the mapping of fact to the inserted
artificial level members. The algorithm is called recursively
until reaching level that is adjacent to the bottom level.

Another summarizability violation concerns double-
counting members. This occurs in case of members of the
dimension hierarchy having multiple parents from the same
level. In the case study presented this occurs in the Forestry
dimension between Forestry and Wood kind levels as wood
kind may originate from more than one Forestry. Algorithm
for managing it is shown in Fig.4. It takes as input a metadata
table MT and looks for parents of each level member starting
from the bottom level. Parents of Child C are counted and
those with count greater than 1 are selected. A table “Multiple
parents” is created for C and the selected parents are inserted
therein. Rows with artificial parents for C are inserted in MT
until top level is reached. Finally the rows of C’s multiple
parents are deleted. The procedure is called recursively until
members of all levels are checked. The algorithm is
performed upon hierarchies with paths of the same length and
links from children to their immediate parents. This can be
achieved initially by applying the algorithms resolving non-
counting violation.

Fig.4. Handling double-counting violation

As a result of the algorithms presented hierarchies are

implemented in the data cube scheme through metadata tables
holding level relationships with explicitly denoted real and
artificial parents and multiple parent tables for children with
multiple parents.

IV. PERFORMING OLAP OPERATIONS
IMPLEMENTING HIERARCHY METADATA

OLAP operations consist of 80% navigational queries that
explore dimension hierarchies and 20% aggregation queries
that summarize data at various levels of detail [5].
Implementation technique for OLAP queries on transformed
dimension hierarchies is presented in [9]. Sample navigational
query concerning our case study is one for showing
Customers per District. Dimension Customer is represented in
Table II:

TABLE II
DIMENSION TABLE

Id MemberName GroupName

Navigational query is internal to a dimension. Input tables

for the query are dimension and hierarchy tables. Initially top
and bottom levels for the navigation are determined. The
Child members for Parent members at the top level are
selected. Only real parent members are examined by the filter
condition “<>0” on the Type field in the hierarchy table. The
dynaset of Child members obtained is joined with the
hierarchy table on the parent field. The query drills down to
the next level by selecting child members for the parents
resulting from the equijoin. The query is performed on the
hierarchy table joined with the dimension table for outputting
members’ names. The Join/Select queries are performed until
reaching the bottom level. The query flow is shown in Fig. 5.

413

414

Fig.5. Navigational query – subquery flow

Aggregation queries involve facts and pre-aggregated

measures. Sample aggregation query is one for counting
Orders grouped by Wood kind or by District. Aggregation
function used may be different.

Aggregation query for retrieving Orders count per District
is examined. The query format is as follows:

 SELECT Customer.District, SUM (Order.Count)
 FROM Customer, Order
WHERE Customer.CustomerID = Order.CustomerId
GROUP BY Customer.District
By means of the algorithms designed in the previous

section dimensional hierarchies are rendered summarizable.
We assume that Order counts for the bottom level of the
Customer dimension are pre-computed and stored in a
separate table with structure shown in Table III.

TABLE III

PRE-AGGREGATION TABLE

Customer Id OrderCount

The aggregation query will use the pre-aggregated

measures for calculating Order counts for the higher hierarchy
levels. Order counts per Customer are to be summarized for
obtaining these per Cities and Districts respectively. The
query flow in SQL statements is shown in Fig.6.

Fig.6. Aggregation query - subquery flow

Input tables for the query flow are Customer dimension and
hierarchy tables and pre-aggregated measures for customers.
Top and bottom levels for aggregations are determined. The

pre-aggregation table for the bottom level is joined with the
hierarchy table on Child field and Parent level members are
obtained. Order counts are then summarized for the resultant
parents. The dynaset obtained is further joined with the
hierarchy table until reaching the top level. When outputting
results real members are filtered. Pre-aggregation assumes
that facts are related to the bottom level of dimensions and the
relationship between facts and dimension members is many-
to-one. In case of violation algorithms for making non-bottom
members have children or for handling double-counting are
initially performed.

V. CONCLUSION

The process of providing summarizability to dimension
hierarchies in order to enhance the performance of OLAP
operations by using pre-computed aggregates for calculating
higher level ones with ensured correctness of results is
investigated. Schema support for dimensional hierarchies in
ROLAP environment is provided. Metadata for hierarchy
structure is designed. Dimensional hierarchy structures that
violate summarizability are explored. Algorithms for
managing the most general violations as non-counting or
double-counting measures in aggregations are proposed.
Mechanism involving standard SQL query flow for
implementing hierarchy metadata in OLAP navigation and
aggregation operations is presented.

Future work is intended in investigating scheme support of
dimension updates and mechanism for maintaining hierarchy
metadata and pre-aggregations under dimension updates.

REFERENCES

[1] A. Rozeva, Dimensional Hierarchies – Implementation in Data
Warehouse Logical Scheme Design, Proceedings of the
International Conference on Computer Systems and
Technologies CompSysTech’07, Rousse, Bulgaria, 2007

[2] A. Rozeva, Designing Navigational Framework in Data
Warehouse Logical Scheme, Proceedings of the International
Conference Automatics and Informatics’07, Sofia, Bulgaria,
2007

[3] D. Pedersen, K. Riis, T.B. Pedersen, A Powerful and SQL-
Compatible Data Model for OLAP, 13th Australasian
Database Conference ADC2002 Proceedings, Melbourne,
Australia, 2002

[4] H. Lenz, A. Shoshani, Summarizability in OLAP and
Statistical Databases, SSDBM Conference Proceedings, pp.
39-48, 1997

[5] R. Kimball, The Data Warehouse Toolkit, Wiley Computer
Publishing, 1996

[6] S. Youness, Data Warehousing with SQL Server 7.0 and
OLAP Services,Wrox Press Ltd, 2000

[7] T. Pedersen, C. Jensen, C. Dyreson, Extending Practical Pre-
Aggregation in On-Line Analytical Processing, 25th VLDB
Conference Proceedings, Edinburg, Scotland, 1999

[8] T. Pedersen, C. Jensen, Multidimensional Data Modeling for
Complex Data, ICDE’99 Conference Proceedings, 1999

[9] T. Pedersen, C. Jensen, C. Dyreson, The TreeScape System:
Reuse of Pre-Computed Aggregates over Irregular OLAP
Hierarchies, VLDB’00 Conference Proceedings, pp. 595-598,
2000

