

Platform Independent-Information System Dependant
Database Replication

Tatjana Stanković1, Milan Stanković2, Dragan Janković3

Abstract – All well-known database replications are practically

impossible in low-speed/low-band networks like modem or even
ADSL connections. Existing replication solutions are all platform
dependant and applications independent. One different approach
is presented in this paper. Described approach, like making
replication dependant on information system and independent on
database platform, showed that replication could work many
times faster, and could be far more simple then existing

Keywords: Database replication

I. INTRODUCTION

Replication is the best way to copy data from one database
to another. Its' exact purpose is coping data and database
objects (views, stored procedures, etc) between servers [1].
Common replication between dislocated databases of one
large company requires reliable high-speed Internet
connections. Fortunately, there are many parts of the world
not jet technically in the position for on-line netting. In our
environments, for example, high-speed on-line Internet
connections (like optical) can be very expensive for some
companies. Modem connection is often the only way for
linking such places. This happens to be a significant problem
for companies that have their regional offices on such
locations. How to transfer data from one company location to
another, without manually exporting, copying files and
importing data? How to avoid engagement of trained experts
and database administrators in thins process? And why
avoiding this way of data transferring?

For the needs of small organizations, the way of transferring
data mentioned above can be satisfied (a few exports-imports
per day). But in large companies that have many tents or
hundreds of DBMS servers, this way of transferring can take
hundreds of business hours per day. The amount of data for
transferring is often too large for mail, web upload, ftp, etc.
And the last, but not the least, data transferred this way are
usually packed into files that requires parsing and additional
processing from the other side, what enlarges the cost of
transfer by increasing time of importing.

Example of organizations with replication problems in our
environment are wholesale-retail trade companies, or public
companies like Electic Power Industry. They usually have a
great number of small regional offices all over the country.
These companies organization structure can be modeled by n-
ary tree. The root of this tree is Central Organization Unit,
1Tatjana Stanković and 3Dragan Janković are from Faculty of
Electronic Engineering, Niš, {tanja, gaga}@elfak.ni.ac.yu
3Milan Stanković is from POWERSOFT d.o.o. Nis, Serbia,
milanst99@yahoo.com

usually supporting the largest amount of processing and
storing data. This unit hosts companies central DBMS. The
other opened question according to these kinds of companies
is: how to avoid an accumulation of unnecessary data on
wayside servers? For quick and efficient business operations
they only need parts of database relations.

The goal of this paper is to define problem's features of large
company's database replication that occurs in low-band/low-
speed network connections, and to propose one possible
solution of this problem. The assumption of database
replication problem referred to one large company with n-ary
tree modeled organization structure is described in chapter
two. Section three demonstrates the review of the most well-
known replication solutions, and the reasons why they can not
be used in our environments. Section four proposes one
possible database replication solution that operates in low-
band and low-speed network connections, and describes this
solution's prototype implemented in one larger company in
our market.

II. TYPYCAL DBMS SERVER'S STRUCTURE OF
LARGE ORGANIZATIONS

The most common model of large companies’ organization
structure is n-ry tree. The root of this tree represents Central
Organization Unit that runs company politics and trading. The
second level tree nodes usually correspond to the company's
regional offices. Their children can be their stacks or markets,
or some smaller regional offices again, etc. All variations
according to node types are possible. Tree level number,
theoretically unlimited, in practice it is usually 3-10 (Fig. 1).

Fig. 1. Example of one company organization structure

Data processing in such companies requires extremely high-
speed and reliable network resources, like optical links

415

mailto:gaga%7D@elfak.ni.ac.yu

between distant locations. In these cases the network
infrastructure cost can be extremely large. So quick and
reliable database replication, that does not demand such
infrastructure, can significantly reduce company's expenses.

DBMS server's structure does not necessary concur with
company's organization structure. One DBMS is commonly
responsible for data storing and data processing of one
subtree. The existence of as less as possible DBMS servers is
pretended to. One typical DBMS server's structure is
represented in Fig. 2.

The strongest demand for database replication is enounced
between directly connected nodes of this structure.
Company’s business dealing itself is represented in a way that
regional offices need to have all data derived from their child
nodes (because they play part of master-offices to child
nodes), and to send them data according to their roles in the
system. Central organization Unit need to dispose with data
derived from all sub-trees of the organization structure.
According to this, dataflow need to run from Central DBMS
to the leaves and inversely, but strictly through the tree
branches (because not any child organization unit can do
business without master organization unit knowing for it). If
there is a request for dataflow between nodes that are not
directly connected, it will be processed through the shortest
possible way between linked nodes (Fig. 2, dot-stroke line).

Fig. 2. DBMS server's structure and dataflow

III. WELL-KNOWN REPLICATION SOLUTIONS IN
LOW-BAND/LOW-SPEED NETWORKS

Let us give a quick review of well-known replication
solutions like SQL Server’s and Oracle’s are. Comparing
existing database replication solutions requires definition of
three factors:

1. Autonomy – the possibility of changing data on deferent
servers.

2. Latency – elapsed time before one server gets updates
from another server.

3. Consistency – equality of servers’ data.

SQL Server provides three kinds of replication: Snapshot,
Transactional, and Merge. The expert level of database
administration is required by all three kinds. Three servers

need to be set: Server Publisher, Server Subscriber and Server
Distributor (One single SQL Server can play part of all three).
Snapshot replication acts in the manner its name implies.
The publisher simply takes a snapshot of the entire replicated
database and shares it with the subscribers. Of course, this is a
very time and resource-intensive process. For this reason,
most administrators don’t use snapshot replication on a
recurring basis for databases that change frequently [2]. It has
medium latency, high consistency and high autonomy.
Transactional replication offers a more flexible solution for
databases that change on a regular basis. With transactional
replication, the replication agent monitors the publisher for
changes to the database and transmits those changes to the
subscribers. This transmission can take place immediately or
on a periodic basis. It requires high-speed and reliable
network links and provides high consistency, low autonomy
and medium latency.
Merge replication allows the publisher and subscriber to
independently make changes to the database. Both entities can
work without an active network connection. When they are
reconnected, the merge replication agent checks for changes
on both sets of data and modifies each database accordingly.
If changes conflict with each other, it uses a predefined
conflict resolution algorithm to determine the appropriate
data. Merge replication is commonly used by laptop users and
others who can not be constantly connected to the publisher
[2]. It provides the highest autonomy degree, great latency and
the lowest consistency.
In the conditions of low-band low-speed network connections,
and frequently database changes (few hundreds inserts or
updates per table), according to time of synchronization,
neither of these SQL Server solutions provides satisfactory
results. We must say that SQL Server replication is a fantastic
piece of functionality but can lead to a database administration
nightmare. Data conflicts are a common occurrence and
require constant attention [3]. The third important reason for
not using SQL Server replication in our environments is this:
SQL Server additionally ballasts database with system relation
and attributes added for replication. In some companies (in
effort to avoid expenses) wayside database servers are
ordinary PCs. This adding can significantly slow down
system: for example, if you replicate one master server with
20 child servers that means that every table taking part in the
replication gets additional 20 fields.
Oracle at first separates replication in synchronous (all
database changes are propagated at once) and asynchronous
(database changes propagated on demand). Oracle provides
three kinds of replication: Multimaster, Snapshot, and
Multimaster and Snapshot Hybrid Configuration [5].
Multimaster replication (also called peer-to-peer or n-way
replication) allows multiple sites, acting as equal peers, to
manage groups of replicated database objects. Each site in a
multimaster replication environment is a master site.
Applications can update any replicated table at any site in a
multimaster configuration. Oracle database servers operating
as master sites in a multimaster environment automatically
work to converge the data of all table replicas and to ensure
global transaction consistency and data integrity.
Insufficiency: At times, you must stop all replication activity

416

for a master group so that you can perform certain
administrative tasks on the master group. For example, you
must stop all replication activity for a master group to issue
data definition language (DDL) statements on any table in the
group.
A snapshot contains a complete or partial copy of a target
master table from a single point in time. A snapshot may be
read-only or updateable. All snapshots provide the following
benefits: Enable local access, which improves response times
and availability; Offload queries from the master site, because
users can query the local snapshot instead; Increase data
security by allowing you to replicate only a selected subset of
the target master table's data set. To ensure that a snapshot is
consistent with its master table, you need to refresh the
snapshot periodically. Every table taking part in the snapshot
replication on Oracle gets one snapshot log table. A snapshot
log is a table that records all of the DML changes to a master
table. Oracle Snapshot replication provides low (read-only)
and high (updateable) autonomy, high latency and lower
consistency comparing to Multimaster.

Multimaster replication and snapshots can be combined in
Hybrid or "mixed" configurations to meet different
application requirements. Mixed configurations can have any
number of master sites and multiple snapshot sites for each
master. Replication conflicts are detected and resolved on
master servers. Administration of this kind of replication
requires highest Oracle experts. Autonomy, latency and
consistency depend on the combination of multimaster and
snapshot replication.

In low-band/low-speed networks all these kinds of replication
are difficult to set, to maintain, and finally to work properly
(according to synchronization time). All jobs like logging data
form transfer, resolving replication conflicts, and transferring
data between servers, are leaved to the Replication Agents
(programs or DBMS processes responsible for replication).
Implementing and maintaining those kinds of replication
requires high-experts teams, and significantly increases
replication costs.

IV. PLATFORM INDEPENDENT-INFORMATION
SYSTEM DEPENDANT DATABASE REPLICATION

PROTOTYPE

After a few months of researching about world known
replication solutions, and according to benefits as well as
imperfections of those where implemented in inconvenient
networking conditions, this papers authors decided to develop
their own replication solution that would be satisfactory to the
following requests:

1. Short time of databases synchronization in low
networking connections (even modems).

2. Highest speed of databases synchronization in high-speed
Internet connection.

3. Reliable data filtering for transmission, in a way that one
DMBS in the server tree stores and gets only data needed
for that organization structure's branches, without any
unnecessary data ballast.

4. The simplicity of setting and maintaining.
5. The simplicity of starting replication process, in a way

that system users can do themselves.
6. Minimal ballast of replicated databases with additional

relations and attributes.
7. Database platform independency.
8. Central DBMS has to get all of companies’ data at the

end.

Part of the replication processes were moved to the authority
of The Information System, according to the first request. In
the way that existing replications work, replication its self is
absolutely transparent to the applications. In our solution,
every application of the System is aware of the servers tree,
and replication between those servers. This step made
replication system to become dependant of companies IS, but
it contributed to solving request 1 and 7 from the list. This
step needed a small intervention of companies IS (as long as
IS was multi-layer system, i.e. it had separate data layer).

This solution concept is:

- Every database in DBMS servers structure gets only five
additional tables for replication:
1. Server table – stores information about DBMS server’s
structure. The number of these tables’ rows is equal to the
number of servers in the server’s tree. This table is the same in
every database from DMBS’s tree. It is also replicated.
2. Log table – table that stores every UPDATE, INSERT or
DELETE statement executed on database, together with the
current timestamp of their execution.
3. Two additional tables that keep information of every
synchronization moment with other servers connected to that
particular server, one for sending and other for receiving data.
4. Filter table – table that stores information about tables
taking part in the replication.

- Data is replicated in both directions. Taking over and
forwarding data are two separate functional steps, so client
does not need to wait double if he expects an important data
transmission, he can only take over data.

- Replication conflicts are avoided with primary key offsets.
Every server in the servers tree has its key offset of 10 million
keys per table. Central server has 100 million keys per table.
This should be enough for a year in every company, but it can
be modified according to the amount of company’s data.
Information about key offsets are also stored in databases (and
replicated), first table.

- A great autonomy degree is provided, and control about
grants over changing data is taken by IS. There are two
replication agents. Rpull agent is client-agent that demands
replication, and Rpush agent is server-agent that takes or
forwards data. Those agents are placed on both sides of
replication, and they communicate over TCP/IP through Win
sockets, just like Internet browsers and servers (Fig. 3). They
can be installed on any computer (not specially server).
Server-agent is running as system service. It is listening for
Client-agent’s demands on the particular port (determinated in
advance) all the time.

417

- Database for replication is not determined in advance for
Server-agent. Rpush agent gets information what database it is
going to replicate, and where is that database, through the
replication demand coming from Client agent. One Rpush
agent can take care of many different replications at the same
moment that way.

DBMS DBMSRpush agent Rpull agent

Rpull agent DBMS

TCP/IP

TCP/IP

LAN 1 LAN 2

LAN 2

418

Fig. 3. Communication between replication agents

- Unlike other replication solutions, this one has data transit
determined in advance. The pockets of data that circulates
through the Network carries with them information about
determination server. This information is initially stored by
the Information System. For example, if one regional office
sends merchandise to the other that is placed in another
branch of the organization structure, the application (aware of
the server’s tree existing) writes to log table address of
determination server. Log table stores information about
source server too, so that data could not be given back to the
server that had it at first place (which could result in a
replication conflict).

- Agents work as following: when Rpull agent gets
verification from Rpush agent that he is connected, it sends
information about database he want to synchronize to. Rpush
makes connection string to the wanted database, and sends
confirmation. For example, Rpull wants to take data over from
Rpush. Rpush agent selects all statements from log table in
database according to the defined algorithm, and packs them
to text file along with determination server information
attached to every statement. File is then compressed and sent
to the Rpull agent. When Rpull gets file, it extracts it, parses
and simply executes statements. Rpull decides whether to log
statements for further synchronization or not, according to the
predefined algorithm.

Described solution prototype was made by this paper’s
authors. It has been tested for seven months in real conditions
of one large company on our market. 51 companies DMBS
server has been successfully connected in the server’s tree
with this prototype (like presented in Picture 2). For the needs
of Central server’s replication two Rpush agents were
installed on two independent computers in LAN.
Theoretically one Rpush agent could serve the unrestricted
number of Rpull’s request at the moment, but we restricted it
to five. After 7 month of testing and improving it, our
solution’s prototype showed following performances: 1) about
200 000 data changes or inserts are delivered to the Central
server per day. One Rpull client asks for Rpush agents favors

more then one time a day. One synchronization with one
server’s subtree lasts for 2 (ADSL) to 10 (MODEM) minutes
(depending on subtree’s business amount of data for that day).
2) Replication conflicts are partially avoided by key offsets,
and the other part is resolved in advance by Information
System (taking care who can change what data). Considering
that IS is fully aware of replication server’s tree existence, it
has information about source server for every data row in
database (according to primary key offset). So it is easy to IS
to determine if someone can change some data. The solution
showed excellent performance in replication conflicts,
considering that there were no conflicts at all. 3) The solution
performed great autonomy degree, high consistency, and
medium latency.

V. CONCLUSION

Completely new approach to database replication is
exposed in this paper, and it is based on dependency of
Information System. The basic idea was: Why wait to come to
replication and then make moves, why not taking care of
replication in advance. In other words, why not make
Applications while working to prepare data that can be used
for database replication. Storing that data in the same database
and few more steps made this replication solution completely
independent on database platform. It can work on
PostgreSQL, Oracle, SQL Server, MySQL, etc, but only with
specialized IS.

This paper exposes basic concept of replication solution
projected and developed (prototype) after ten months of
researching for satisfying existing solution. Researching and
practical experience in applying described concept showed
that proposed replication can seriously reduce one company’s
expenses according to network infrastructure, and database
administration, extremely in companies that have many small
distinct regional offices. Anybody (does not need to be an
expert) can perform such replication, because it was reduced
to two button-clicks for common Information System users.
We can conclude that making database replication dependant
on applications made it extremely simple and quick for
maintaining and performing, and made the minimum of
additional ballast on databases themselves. Also, it made it
Database Platform independent. That way, this kind of
replication can be performed successfully on weak wayside
database servers, and in low-speed/low-band network
connections.

REFERENCES

[1] M. Gunderloy, J.L. Jorden, SQL Server 2000, Mikro knjiga,
2000.

[2] M. Chapple, SQL Server Replication,
http://databases.about.com/cs/sqlserver/a/aa041303a.htm

[3] SSW SQL Total Compare - Utility to Manage SQL Server
Replication, http://www.ssw.com.au/ssw/SQLTotalCompare/

[4] http://www.dbasupport.com/oracle/ora9i/ors.shtml/
[5] Oracle8i Replication Release 2 (8.1.6),

http://www.cs.bris.ac.uk/maintain/OracleDocs/server.816/a769
59/repover.htm

http://www.ssw.com.au/ssw/SQLTotalCompare/
http://www.dbasupport.com/oracle/ora9i/ors.shtml/
http://www.cs.bris.ac.uk/maintain/OracleDocs/server.816/a76959/repover.htm
http://www.cs.bris.ac.uk/maintain/OracleDocs/server.816/a76959/repover.htm

