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Abstract – In this paper, the simple direction of arrival (DOA) 
methods for uniform rectangular array (URA) and uniform 
circular array (UCA) based on narrowband radio-frequency 
signals are introduced. Arrays are composed of a number of 
uniformly distributed identical half-wavelength dipoles. 
Numerical examples are presented to illustrate these methods.  
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I. INTRODUCTION 

Smart antennas (adaptive arrays) can provide a substantial 
capacity improvement in the frequency-resource-limited 
radio-communication system. They are used in order to 
improve capacity per user channel and better quality [6]. 

Spatial processing is the central idea for smart antennas. 
This is a technology that would be implemented into the 
existing wireless communications infrastructures to provide 
broader channel bandwidth and new improved services. 

The investigation of smart antennas suitable for wireless 
communication systems has involved primary uniform 
circular arrays (UCA) and uniform rectangular arrays (URA). 
They possess the ability to scan in 3-D space, and it is 
necessary for wireless devices to scan the main beam in any 
direction of elevation and azimuth. 

Two DOA estimation methods are introduced for the 
significant improvement in smart antenna resolution [6]. This 
paper presents UCA-ESPRIT and the 2-D unitary ESPRIT for 
direction of arrival estimation analysis of UCA and URA, 
respectively. Limited numerical examples are depicted to 
illustrate these algorithms. 

 
 
 
 
 
 

II. UNIFORM CIRCULAR  AND RECTANGULAR  
ARRAY CONFIGURATIONS 

A. Circular antenna structure 

The UCA with radius a consisting N equally distributed 
identical half-wavelength dipoles is located on x-y plane, as 
illustrated in Fig. 1. 

An incoming plane wave (narrowband signal) with 
wavelength  arrives at the array from elevation angle   and 
azimuth angle  . A spherical coordinate system is used to 
denote the arrival direction. The origin of coordinate system is 
located at the center of the array. 

As presented in Fig. 1, the array factor (AF) of UCA is 
given by [4] 
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where nw , 2   and n  are the estimated weights and 
angular positions of the nth element, respectively, a is the 
radius of the UCA, and k is the wave number ( 2k ). 

 
Fig. 1. UCA geometry, along with an incoming plane wave 

B. Rectangular antenna structure 

The URA consisting N x M equally distributed identical 
half-wavelength dipoles (M, N – even) is located symmetrical 
in x-y plane, as illustrated in Fig. 2. 
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The array factor (AF) of URA with its maximum along 0 , 

0  is given by [3] 
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and Amn is the amplitude excitation of the individual element, 
dx, dy are the interelement spacing along the x-axis and the    
y-axis, respectively. 

 

 
 

Fig. 2. URA geometry, along with an incoming plane wave 

III. DIRECTION OF ARRIVAL ESTIMATION METHODS 

A. UCA-ESPRIT method 

The UCA-ESPRIT method is unique different from the 
classical ESPRIT. Applying this algorithm under the 
conditions of a UCA structure, the eigenvalues of each 
correlation array matrix have the form [4] 
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where ( i , i ) are respectively elevation and azimuth angles 
of  incoming plane wave of ith signal source ( Mi ,...,2,1 ), 
M is the number of the narrowband sources. 

The three basic steps of real valued estimation are [1]: 
1. The signal eigenvector estimation. 
2. The equation system solution derived from 

eigenvectors computed in step 1. 
3. The eigenvalues estimation of the solution to the 

system worked out in step 2. 

This method gives several advantages in comparison with 
classical ESPRIT, such as: a) reduced computational 
complexity; b) very accurate finds simultaneously both the 
elevation and azimuth angles of arrival for incoming signals, 
and c) lower SNR (signal-to-noise ratio) resolution thresholds 
[5]. 

B. 2-D unitary ESPRIT method 

The 2-D unitary ESPRIT algorithm is unique different from 
the classical ESPRIT, first of them provides closed-form 
automatically paired two dimensional estimation as long as 
the elevation and azimuth of each narrowband signal arrives at 
the URA [1]. Applying this method under the conditions of a 
URA structure (Fig. 2), the array manifold has the matrix 
form 
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where the array manifold is 
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  is the wavelength, p is the direction cosine variable relative 
to the x-axis and 
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is defined from  Na  with N,   replaced by M,   
respectively 
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is the spatial frequency variable, q is the direction cosine 
variable relative to the y-axis. 

Pre-multiplying  ,A  by H
NQ  and post-multiplying 

by 
MQ , creates the real valued N x M array manifold 
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where H
NQ , H

MQ  are a sparse unitary matrices that transforms 

 Na  into an N x 1 real valued vector manifold 
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 Md  is defined by  Nd  with N,   replaced by M,   
respectively. 

The real valued N x M array satisfies  

                       ,,
2

tan 21 DKDK 





                   (13) 

where K1 and K2 are the real and imaginary parts of 
H
N

H
N QJQ 21 , 2J  select the last N-1 elements of an N x 1 

vector. 
The NM x 1 real valued manifold in vector form 
   ],[,  Dd vec  satisfies the requirement 
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where 1K  and 2K  are the (N-1)M x NM matrices 
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where   denotes the Kronecker matrix product. 
Similarly,     MM dKdK 43   

where    M
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where 1K  and 2K  are the N(M-1) x NM matrices 
              NIKK  31 , NIKK  42                     (17) 

The real valued DOA matrix D=[  11 ,d ,…,  dd  ,d ] 
satisfies 
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If X denotes the NM x Ns complex valued element space 
data matrix, the array output data matrix may be expressed as 

 XQQY H
N

H
M   and the appropriate NM x d signal 

eigenvector matrix Es may be computed as the d  “largest” left 
singular vectors of [Re{Y}, Im{Y}]. Viewing the signal 
relations as 
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Finally, from the eigenvalues of the matrix 
 TΩΩTψψ  jj  1  compute spatial frequency 

estimates i , i . 
This method provides closed form 2-D angle estimation in 

real time and has selfsame advantages as UCA-ESPRIT 
algorithm. 

IV. NUMERICAL EXAMPLES FOR DOA ESTIMATION 

The DOA estimation is investigated under the conditions of 
a UCA structure and URA structure with half-wavelength 
dipoles. Methods described above are utilized to perform the 
estimation [1]. The signal of interest (SOI) incomes from 
( 00 120,70   ), while the three signals not of interest 

(SNOI) are directed from ( 00 100,50   ), 

( 00 95,45   ), and ( 00 140,90   ) are given in 

Table I and Table III. The signal-to-noise ratio in all the 
considered cases is assumed to be (- 40) dB. 

The results from UCA simulations are presented in Table II. 
The UCA with radius 6.0a  is examined about two 
scenarios: a) when array consists of N=6 elements; b) when 
array consists of N=8 elements. 

 The results from simulations for URA are described in 
Table IV. Two configurations of URA are examined: a) a 
(N=6, M=6) elements uniform rectangular array 
with 6.0 yx dd ; b) a (N=8, M=8) elements uniform 

rectangular array with 6.0 yx dd . 
 

TABLE I 

THE UCA-ESPRIT DOA DATA  

 Case 1 Case 2 
Number of 
elements M=6 M=8 

Interelement 
spacing 0.6λ 0.6λ 

Number of 
incoming signals 1 1 

Number of data 
samples 2000 2000 

Actual 

SOI θ1=700, 
φ1=1200 

θ1=700, 
φ1=1200 

SNOI 1 θ 2=500, 
φ2=1000 

θ 2=500, 
φ2=1000 

SNOI 2 θ 3=450, 
φ3=950 

θ 3=450, 
φ3=950 

SNOI 3 θ 4=900, 
φ4=1400 

θ 4=900, 
φ4=1400 

 
 

TABLE II 

THE DOA ESTIMATIONS OBTAINED UTILIZING UCA-ESPRIT 

 Case 1 Case 2 
Number of 
elements M=6 M=8 

Interelement 
spacing 0.6λ 0.6λ 

Number of 
incoming signals 1 1 

Number of data 
samples 2000 2000 

DOA Estimations 

SOI θ1=70.0200, 
φ1=120.0540 

θ1=69.9910, 
φ1=119.9940 

SNOI 1 θ2=50.0570, 
φ2=100.0510 

θ2=49.9980, 
φ2=99.9920 

SNOI 2 θ3=44.9710, 
φ3=94.9630 

θ1=44.9910, 
φ1=94.9920 

SNOI 3 θ4=90.0150, 
φ4=139.9690 

θ2=89.9910, 
φ2=139.9920 
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TABLE III 

THE 2-D UNITARY ESPRIT DOA DATA  

 Case 1 Case 2 
Number of 
elements M=6 ,N=6 M=8, N=8 

Interelement 
spacing 0.6λ 0.6λ 

Number of 
incoming signals 1 1 

Number of data 
samples 2000 2000 

Actual 

SOI θ1=700, 
φ1=1200 

θ1=700, 
φ1=1200 

SNOI 1 θ 2=500, 
φ2=1000 

θ 2=500, 
φ2=1000 

SNOI 2 θ 3=450, 
φ3=950 

θ 3=450, 
φ3=950 

SNOI 3 θ 4=900, 
φ4=1400 

θ 4=900, 
φ4=1400 

 

TABLE IV 

THE DOA ESTIMATIONS OBTAINED USING 2-D UNITARY ESPRIT 

 Case 1 Case 2 
Number of 
elements M=6 ,N=6 M=8, N=8 

Interelement 
spacing 0.6λ 0.6λ 

Number of 
incoming signals 1 1 

Number of data 
samples 2000 2000 

DOA Estimations 

SOI θ1=70.0180, 
φ1=120.0510 

θ1=69.9940, 
φ1=119.9950 

SNOI 1 θ2=50.0550, 
φ2=100.0460 

θ2=49.9950, 
φ2=99.9950 

SNOI 2 θ3=44.9730, 
φ3=94.9660 

θ3=44.9830, 
φ3=94.9970 

SNOI 3 θ4=90.0180, 
φ4=139.9730 

θ4=89.9920, 
φ4=139.9980 

 
Both types of arrays are investigated in the presence of the 

Additive White Gaussian Noise (AWGN) with the zero mean, 
and variance 0.1. The results demonstrate theirs ability for 
accurate estimation, great performance, and robustness.  

V. CONCLUSION 

This paper investigated uniform circular and rectangular 
smart antennas with half-wavelength dipoles. A brief theory 
of two different antenna arrays to distinguish the direction of 
arrival by ESPRIT algorithm is considered. This theory was 
supported by suitable numerical data (see the Tables). The 
antennas were exploited in order to obtain more efficient 
method for a calculation of accurate DOA of impinging 
signals at the array. 

Numerical examples have illustrated that the optimal 
scenario for the antenna geometry is UCA with M=6 
elements, because of the symmetry UCA has almost the same 
performance as URA but with lower number of elements.  
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