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Abstract – The importance of IP network will further increase 
and it will serve as a platform for more and more services, 
requiring different types and degrees of service quality. Modern 
architectures and protocols are being standardized, which aims 
at guaranteeing the quality of service delivered to users. In this 
paper, we investigate the queueing behaviour found in IP output 
buffers. This queueing increases because multiple streams of 
packets with different length are being multiplexed together. To 
analyze these types of behaviour, we study the discrete-time 
version of the “classical” queue model M/D/1/k called Geo/D/1/k. 
This is a discrete-time single server FIFO queue with Bernoulli 
arrivals and deterministic service times. We develop balance 
equations for the state of the system, from which we derive 
packet loss and delay results. 
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I. INTRODUCTION 

The initial motivation for this paper is the necessity of 
traffic engineering in NGN networks. Many analyses of 
Internet traffic behaviour require accurate knowledge of the 
traffic characteristics for purposes ranging from a 
management of the network quality of service to modelling 
the effect of new protocols on the existing traffic mix. 

Modern architectures and protocols are being standardized, 
which aims at guaranteeing the quality of service delivered to 
users. The proper functioning of these protocols requires an 
increasingly detailed knowledge for statistical characteristics 
of IP packets. The amount of information flowing through the 
network also increases, and the challenge is to obtain the 
accurate information from a huge set of data packets [5,7]. 
The packet queueing in an IP router arises because multiple 
streams of packets from different input ports are being 
multiplexed together over the same output port [9,14].  

Many communication systems operate on a discrete-time 
basis and events can only happen at regularly spaced epochs.  

Discrete-time queueing systems have been receiving 
increased attention in recent years due to their usefulness in 
modeling and analyzing various types of communication 
systems. But the technical difficulties which arise in working 
with a discrete time scale are considerably greater than in 
dealing with continuous time models although the 
mathematics behind is more elementary than in the continuous 

time case. The reason for this is the combinational complexity 
which appears in the solution procedures for the global 
balance equations of these systems. 

Discrete-time queueing systems have been a research topic 
for several decades now and there are many reference works 
on discrete-time queueing theory. Over the years, different 
methodologies have been developed to assess the performance 
of queueing systems. The two main analytical approaches are 
the matrix analytic method and the transform method for 
discrete and for continuous-time analyses. Many authors have 
considered the Geo/G/1 discrete-time queueing system [8], 
[10], [12], [13].  

[6] has studied a discrete-time Geo/D/1 and Geo/D/1/n 
queues. The closed-form expressions for the steady-state 
distributions of the queue length and of the unfinished work in 
system (i.e. waiting time) are obtained by the method of 
analysis, using Lindley's equation. 

In [1] a complete study of a discrete-time single-server 
queue with geometrical arrivals of both positive and negative 
customers is carried out. Negative arrivals are used as a 
control mechanism in many telecommunication and computer 
networks. [2] has concerned with the study of a discrete-time 
single-server retrial queue with geometrical inter-arrival times 
and a phase-type service process. An iterative algorithm to 
calculate the stationary distribution of Markov chain is given.  

[11] has proposed a traffic model and a parameter fitting 
procedure that are capable of achieving accurate prediction of 
the queuing behaviour for IP traffic exhibiting long-range 
dependence. The modelling process is a discrete-time batch 
Markovian arrival process (dBMAP) that jointly characterizes 
the packet arrival process and the packet size distribution. In 
the proposed dBMAP, packet arrivals occur according to a 
discrete-time Markov modulated Poisson process (dMMPP) 
and each arrival is characterized by a packet size with a 
general distribution that may depend on the phase of the 
dMMPP. 

[3] has presented an introduction to bandwidth estimation 
and a solution to the problem of the best-effort traffic for the 
case when the quality criteria specify negligible packet loss. 
The solution is a simple statistical model, which is built and 
validated using queueing theory and extensive empirical 
study. 

It has been shown [4] that in the case of real-time 
communications, for which small buffers are used for delay 
reasons, short range dependence dominates the loss process 
and so the Markov-modulated Poisson process (MMPP) might 
be a reasonable source model. They have presented an exact 
mathematical model for the loss process of a 
MMPP+M/Ek/1/K queue and have concluded that the packet 
size distribution affects the packet loss process and thus the 
efficiency of forward error correction. 
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 In this paper, we investigate the basic queueing behaviour of 
packets found in IP output buffers. The traffic is being 
generated from the packets of constant size that arrive for 
transmission on the link. The packets can queue up and loss if 
their size is bigger than the free positions of the buffer. The 
quality metrics for the best-effort traffic on the Internet are the 
packets loss and delay. To analyze these types of behaviour, 
we study the discrete-time version of the “classical” queue 
model M/D/1/k called Geo/D/1/k. We developed balance 
equations for the state of the system, from which we derived 
packets loss and delay. 

II. BALANCE EQUATIONS - GEO/D/1/K QUEUE 

We investigate a single server finite queue delay system 
Geo/D/1/k with a geometric distributed inter-arrival time and 
a constant packet length. We consider queueing phenomena in 
discrete-time queueing systems. We assume a fundamental 
time unit (time slot), the time to transmit an octet (byte), Tb. 
Customers arrive in the queueing system under consideration 
during the consecutive slots, but they can only start service at 
the beginning of slots. That is, service of customers is 
synchronized with respect to slot boundaries. Further, 
customer service times are integer multiples of the slot length, 
which implies that customers leave the system at slot 
boundaries. During the consecutive slots, packets arrive in the 
system, are stored in a finite capacity queue and are served by 
a single server on a first in first out (FIFO) basis (Fig. 1). 
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Fig. 1.  Timing of events in the Geo/D/1/k queue. 

 

We use a Bernoulli process for the packet arrivals, i.e. a 
geometrically distributed number of slots between arrivals. 
Let the probability that a packet arrives in an octet slot is p. 

Thus we have a batch arrival process with geometrically 
distributed inter-arrival times. That is, the number of slots that 
separate consecutive slots where there are customer arrivals, 
constitute a series of independent and identically 
geometrically distributed random variables. The probability of 
no octets arriving in a time slot is 

  (1) pa −= 10

In this model, we assume a constant packet size with a 
value m. 

The probability that m octets arrive in a time slot is 

  (2) pam =

The mean packet service time is the octet transmission time 
multiplied by the number of octets 

 smTb ,=τ  (3) 

The mean arrival rate is 

 spacketsTp b /,=λ  (4) 

Therefore, the offered traffic is given by 

 ErlmpA ,== λτ  (5) 

The average inter-arrival time of the packets in time slots of 
the geometric distribution is 

 pmo 1=  (6) 

The variance of the inter-arrival time of the packets is 

 2)1( ppvi −=  (7) 

We define the state probability Pi of being of state i, as the 
probability that there are i octets in the system at the end of 
any time slot. For the system to contain i bytes at the end of 
any time slots it could contain any of 0, 1, 2, ..., i+1 at the end 
of the previous slot. State i can be reached from any of the 
states 0 up to i by a precise packet arrival. To move from i+1 
to i there should be no arrivals. 

We can write the first equation by considering all the ways 
in which it is possible to reach the empty state 

 

 ( ) 0100 aPPP +=  (8) 

Similarly, we find a formula for the next state probabilities 
by writing the balance equations 

 11,01 −≤≤= + miaPP ii  (9) 

We continue with this process and take into account that it 
is possible to enter a packet in a time slot with length m bytes 
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 Then using the fact that all the state probabilities must sum 
to 1 we write the last equation 

  (11) 11

0
=∑ +

= i
k

i
P

We can solve the system Eqs. (8), (9), (10) and (11) and 
calculate the state probabilities. 

III. PERFORMANCE MEASURES 

The carried traffic is equivalent to the probability that the 
system is busy 

  (12) erlPAo ,1 0−=

The packet congestion probability is the ratio of lost traffic 
(offered minus carried traffic) to offered traffic 

 ( ) AAAB o−=  (13) 

The mean number of bytes and packets present in the system 
in steady state by definition is 

 packetsmLLbytesPjL bp
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From the Little formula, we have the normalized mean 
system time of the bytes (time is measured in time slots)  
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IV. NUMERICAL RESULTS 

In this section, we give numerical results obtained by a 
Pascal program on a personal computer. The described 
methods were tested on a computer over a wide range of 
arguments. 

Fig. 2 shows the stationary probability distribution in a 
single server queue Geo/D/1/k with 0.95 erl offered traffic, 
100 waiting positions and different packet length. We can see 
that the probability distributions are almost linear decreasing 
in logarithmic scale and the influence of the packet length 
distribution kind on the stationary probability is significant.  

Fig. 3 compares the packet congestion probability as 
function of the traffic intensity when the waiting positions are 
200 and different packet size. We can see that the influence of 
the packet length on the packet congestion probability is big. 

Fig. 4 presents the normalized mean system time of the 
bytes (W/Tb) as function of the traffic intensity when the 
queue length is 200 bytes and different packet size. The 
influence of the packet size on the mean system time is 
significant when the offered traffic is smaller then 1 erl. 

We compare the discrete-time queue Geo/D/1/k with 
continuous time Poisson arrival queue model M/D/1/k. In this 
model we can accept that the packet length is one byte. When 
the packets size increases (3, 5 and 10 bytes) the stationary 

probability distribution is change and the packet congestion 
probability and mean system time increase vastly. 
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Fig. 2. Stationary probability distribution 
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Fig. 3. Stationary probability distribution 
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Fig. 4. Stationary probability distribution 
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 V. CONCLUSION 

In this paper a basic discrete-time single server teletraffic 
system Geo/D/1/k with a constant packet length is examined 
in detail. We present an analysis of this discrete-time queue. 

The proposed approach provides a unified framework to 
model discrete-time single server queue. Numerical results 
and subsequent experience have shown that this approach is 
accurate and useful in both analyses and simulations of traffic 
systems. 

The importance of a single server queue in a case of a 
geometric input stream and constant packet length comes 
from its ability to describe behaviour that is to be found in 
more complex real queueing systems. It is the case in a 
general traffic system, which is an important feature in 
designing telecommunication networks and systems. 

The results presented here add a new aspect to the 
evaluation of the discrete-time queueing system, and serve as 
a basis for future research on guaranteeing the quality of 
service 

In conclusion, we believe that the presented analytical 
model will be useful in practice. 
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