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Abstract — The paper consider simulation modeling of self-
similar teletraffic. Steady-state simulation of self-similar queuing 
processes was provided with fixed-length sequence generators. A 
new algorithm for buffer overflow with limited relative error is 
developed. The implementation of suggested simulation approach 
for stochastic and long range dependence teletraffic source 
models is shown. Buffer overflow simulation for finite buffer 
single server model under self-similar traffic load SSM/M/1/B is 
considered. 
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I. INTRODUCTION 

Apromising method in integration of technologies and 
services in digital communication networks is the simulation 
modeling of sources, traffic and their management. The 
simulation modeling is an abstraction of the real interaction 
between sources, which leads to simplification and limited 
performance of the behavior of the elements in real 
communication network. This is realized with the help of 
stochastic processes where the generated traffic is based on 
study of the behavior of certain classes of probability 
processes like time series analysis, long range dependence 
stochastic processes, chaotic time series, discrete-time Markov 
state models, queuing theory [2].  

Recent studies of real teletraffic data show that teletraffic 
exhibits self-similar (or fractal) properties over a wide range 
of time scales [1]. The self-similar nature of teletrafic (in sense 
of long-range dependent behaviour is exhibited over a range 
of time scales: milliseconds, seconds, minutes and hours) can 
have a significant impact on network performance. The 
properties of self-similar teletraffic are very different from 
properties of traditional models based on Poisson, Markov-
modulated Poisson, and related processes [2]. The use of 
traditional models in networks characterized by self-similar 
processes can lead to incorrect conclusions about the 
performance of analyzed networks. 

The traditional models can lead to over-estimation of the 
network performance/quality, insufficient allocation of 
communication and data processing resources, and difficulties 
in ensuring the quality of service (QoS) expected by network 
users. Thus, full understanding is that the self-similar nature in 

teletrafic is an important issue.  
Self-similar teletraffic is observed in LAN and WAN, 

where superposition of strictly independent alternating 
ON/OFF traffic models whose ON- or OFF-periods have 
heavy-tailed distributions.  In ATM network traffic self-
similar traffic arriving at an ATM buffer results in a heavy-
tailed buffer occupancy distribution and buffer cell loss 
probability decreases with the buffer size, not exponentially as 
in traditional Markovian models, but hyperbolically. 

Other implementation of traffic self-similarity is in Internet 
traffic, where many characteristics of WWW can be moddeled 
using heavy-tailed distributions to help user requests for 
documents and the distribution of WWW document sizes. In 
TCP/IP network traffic the transfer of files or messages show 
that the reliable transmission and flow control mechanisms of 
TCP serve to mainain long range dependent structure included 
by heavy-tailed file size distributions. The relationship 
between self-similar traffic and network performane is 
presented in [1]. 

The self-similarity observed in video traffic give posibility 
for developing models for VBR video traffic using heavy-
tailed distributions. The autocorrelation of the VBR video 
sequence decay hyperbolically and can be modelled using 
fractional autoregressive integrated moving-average (F-
ARIMA) and fractional Gaussian noise (FGN) self-similar 
processes. 

The impact of self-similar models on queueing performance 
is signifficant and the main trends in such findings are 
connected with (a) permission traffic modelling for high-speed 
networks, (b) efficient simulation of actual network traffic and 
(c) analysing queueing models and protocols under realistic 
traffic scenarios. 

II. SELF-SIMILAR PROCESSES 

Self-similarity can be classified into two types: 
deterministic and stochastic. In the first type, deterministic 
self-similarity, a mathematical object is assumed to be self-
similar (or fractal) if it can be decomposed into smaller copies 
of itself. This work is focused on stochastic self-similarity. In 
that case, probabilistic properties of self-similar processes 
remain unchanged or invariant when the process is viewed at 
different time scales. This is in contrast to Poisson processes 
that lose their burstiness and flatten out when time scales are 
changed. One can distinguish two types of stochastic self-
similarity. A continuous-time stochastic process Yt is strictly 
self-similar with a self-similarily Hurst parameter H 
(1/2<H<1), if Yct and cHYt (the rescaled process with time 
scale ct) have identical finite-dimensional probability for any 
positive time stretching factor c. When the weakly continuous-
time self-similar process Yt has stationary increments, i.e., the 
finite-dimensional probability distribution of 
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not depend on t0, than such process can be constructed as a 
stationary incremental process X={Xi=Yi+1-Yi: i=0,1,2…}. For 
second-order self-similar process the self-similarity is 
observed at the mean, variance and autocorrelation levels. The 
process X is asymptotically second-order self-similar with self-
similarity parameter H (0.5<H<1) if for any block size m, the 
process {m1-HXk

(m): k=1,2…} has the same covariance 
structure. Modeling and simulation of self-similar traffic can 
be performed with the generators of synthetic self-similar 
sequences, divided into two practical classes: the sequential 
generators and the fixed-length sequence generators. 

In this work under consideration are fixed-length sequence 
generators, which are implemented for buffer overflow at 
single server models. 

III. FIXED – LENGTH SEQUENCE GENERATORS FOR 
SELF – SIMILAR TELETRAFFIC 

Markovian models for self-similar traffic require including 
several control parameters with a wide range of input values, 
like size of the sequence, Hurst parameter, scale parameter, 
vanishing moment, etc. The most appropriate controlling of 
these values of self-similar processes is realized with fixed-
length sequences generators [3]. Here is used a generator of 
pseudo-random self-similar sequences based on fractional 
Gaussian noise and Daubechies wavelets (DW) [3], called 
FGN-DW approach. 

Wavelet analysis transforms a sequence onto a time-scale 
grid, where the term scale is used instead of frequency. The 
wavelet transform delivers good resolution in both time and 
scale, as compared to the Fourier transform, which provides 
only good frequency resolution. The developed algorithm 
consists of the following steps. 

Algorithm for generating of FGN-DW pseudo-random self-
similar sequences: 

Step 1: Given: Hurst parameter H. Start for i=1 and 
continue until i=n. Calculate a sequence of values {f1,f2,…,fn} 
using  

),|(|||),( )2,23min(21 HH
f OcHf     (1) 

where ),12()sin()2( 1.2   HHc f   O() represents the 

residual error and );/(ˆ Hniffi  , the value of the 
frequencies fi corresponds to the spectral density of an FGN 
process for fi ranging between /n  . 

Step 2:  Multiply {fi} by realizations of the independent 
exponential random variable with the mean of one to obtain 
{ if̂ }, because the spectral density estimated for a given 
frequency is distributed asymptotically as the independent 
exponential random variable with the mean f(,H). 

Step 3: Generate a sequence {Y1,Y2,…,Yn} of complex 

numbers such that 
ii fY ˆ||   and the phase of Yi is uniformly 

distributed between 0 and 2. This random phase technique 

preserves the spectral density corresponding to { if̂ }. It also 

makes the marginal distribution of the final sequence normal 
and produces the requirements for FGN. 

Step 4: Calculate two synthetic coefficients of orthonormal 
Daubechies wavelets. The output sequence {X1,X2,…,Xn} 
representing approximately self-similar FGN process is 
obtained by applying the inverse Daubechies wavelets 
transformation of the sequence {Y1,Y2,…,Yn}. 

The normalized arrivals sequence for n=10 000 
observations received after wavelet transform is shown on 
Fig.1 with FGN-DW algorithm. The sequence is normalized 
for integer number of arrivals in interval [0, 40] for following 
parameters: H=0,75; Scale=4 and Vanishing Moment=6. The 
reveived results showed that the generator based on FGN-DW 
method demonstrated a hidh level of accuracy, was fast and 
can be implemented for long sequences with long-range 
dependent properties. 
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Fig. 1. Arrivals sequence after normalization with wavelet transform. 

 

IV. STEADY – STATE SIMULATION OF SELF – SIMILAR 
QUEUING SYSTEMS 

There exists a significant difference in the queueing 
performance between traditional models of teletraffic such as 
Poisson processes and Markovian processes, and those 
exhibiting self-similar behaviour. More specifically, while 
tails of queue length distributions in traditional models of 
teletraffic decrease exponentially, those of self-similar traffic 
models decrease much slower. Under investigation are 
potential impacts of traffic characteristics, including the 
effects of self-similar behaviour on queuing and network 
performance, protocol analysis, and network congestion 
controls. 

The steady-state simulation of self-similar queueing systems 
inclide generation of self-similar traffic, simulation of queing 
process and simulation of overflow probability. Here this is 
illustated on buffer overflow simulation for SSM/M/1/B 
queueing systems (B<) (i.e. queuing systems with the finite 
buffer capacity) at self-similar queuing processes. In this case, 
the difference from M/M/1/B queuing system is that the 
arrival rate j into SSM/M/1/B queuing system is not a 

 
 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

178



 

 

constant value, where SSM/M/1/B queuing system has 
exponential service times with constant rates 1/ as is shown 
on Fig. 2. 

 

 
Fig. 2. State transition diagram for a SSM/M/1/B queuing system. 
 
 
The flow balance equations are  
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Hence, the rate at which the custumers are lost (blocked) is 
PB. The queuing process is described with the steady-state 
simulation algorithm, presented on Fig.3.  
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Fig. 3. Algorithm of queuing process. 

 
The simulation is realized with RESTART method [4], 

which is a variant of splitting where any chain is split by a 
fixed factor when it hits a level upward, and one of the copies 
is tagged as original for that simulation level [5]. When any of 
those copies hits that same level downward, if it is the original 
it just continues its path, otherwise it is killed immediately. 
This rule applies recursively, and the method is implemented 

in a depth-first fashion, as follows: whenever there is a split, 
all the non-original copies are simulated completely, one after 
the other, then simulation continues for the original chain. The 
calculation of buffer size for all sequences gives possibilities 
for determining the overflow probability. 

V. LIMITED RELATIVE ERROR SIMULATION OF 
BUFFER OVERFLOW  

The limited relative error (LRE) [5] gives posibility to 
determine the complementary cummulative function of 
arrivals at single server buffer queues with Markov processes. 
For describing the princilpes of LRE for steady-state 
simulation in disctere-time Markov chains consider 
homogenious two-node Markov chain, wich is extended to 
common disctere-time Markov chain, consisting of k+1 nodes 
with states, respectively S0,S1,…,Sk. We receive the random 
generated sequence х1,х2,...,хt,хt+1,… for x=0,1,…, k, for wich 
exists transition for state Sj at the time t, e.g. xt=j and there are 
no constraints to the parameters of transition probabilities  

    
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There are no absorbing states Si at рii=1 for all stationary 
probabilities Рj j=0,1,…,k, which satisfy the constraint 
condition 
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The cummulative distribution F(x) can be presented as 
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For simulation of (k+1) nodes Markov chain more 
significant is complementary cummulative distribution 
G(x)=1-F(x), wich togather with the local correlation 
coefficient (x) can be determined with the help of limited 
relative error approach. After determining of two node 
Markov chain, via changing of the states n times can be 
received an estimation of the local correlation coefficient 

)(ˆ x , which can connect the number of transitions througt 
dividing line  аiсi, with the total number of observated events 
at left side li=n-di  1,...,1,0  i , and at rigth side di 
 kii ,...,2,  .  

The value of simulated complementary cumulative 
distribution iĜ  can be determined directly via relative 

frequency ndi , if there are enough number of samples  

    10,,,; 10,;10 23  iiiiiiii cdalcadln  (7) 
The posterior equations can be used for the complementary 

function  xĜ , for tha average number of generated values of 

̂ , for the local correlation coefficient  x̂ , for the 
correlation coefficient Cor[x] and for the relative error RE[x]  
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The main advantage of this approach is that the 
relationships between transitions ci is reached with routine 
statistical calculations. The necessary total number of 
simulation trails n is determined by the maximal relative error 

 2 
maxRE x  and by the less value of the function G(x), 

presented as kGG ˆ
min   in approximation equation 
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This procedure is realized with common version of 
limmited relarive error algorithm for random discrete 
sequences. 

VI. EXPERIMENTAL RESULTS  

To show the effect of self-similarity on probability of buffer 
overflow, the received experimental results for SSM/M/1/B 
queuing system are compared with complementary cumulative 
distribution for classical single server finite buffer queue 
M/M/1/B as shown on Fig. 4. 

For receiving representative and stable results were used 
sequences of 10 000 observations. With the suggested LRE 
algorithm were calculated the values of complementary 
cumulative function G(x) for different buffer size. The 
calculations were provided with step m=4. The increasing of 
Hurst parameter leads to insignificant decreasing of overflow 
probability. For example, for the value of Hurst parameter 
H=0,6 the overflow probability is G(L)=10,45.10-2, and for 
H=0,9 –G(L)=5,6.10-2. 

VII. CONCLUSION 

Steady-state simulation of self-similar queuing processes 
was provided with fixed-length sequence generator. The 
simulation is realized with RESTART method. A new 

algorithm for simulation of buffer overflow probability was 
developed for self-similar traffic generation with limited 
relative error. Buffer overflow simulation for finite buffer 
single server model under self-similar traffic load with 
suggested algorithm is considered. 

An implementation of suggested simulation approach for 
the stochastic and long range dependence teletraffic source 
models is shown. Models of SSM/M/1/40 queuing system with 
different characteristics of self-similarly process of arrivals 
and different buffer size are presented. 
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Fig. 4. Simulation of buffer overflow probability (L=41) for 

SSM/M/1/40 queuing system. 
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