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Abstract – In this paper we compare the near-perfect 
reconstruction (NPR) quadrature mirror filter (QMF) design, 
versus perfect reconstruction (PR)-QMF design in terms of the 
flexibility of the design and the design filter characteristics, and 
their efficiency for denoising of the signals based on wavelet 
shrinkage technique.  
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I. INTRODUCTION 

There are many methods, both in space and in a transform 
domain, for noise removal from the images [1-12]. In cases 
when the transformation of the original noisy image is 
adequately chosen, the energy of the signal will be 
concentrated into a small number of coefficients. One possible 
choice is to process signals in the discrete wavelet transform 
(DWT) domain, while other choice is the Fourier transform of 
a signal which contains energy at all frequencies. Until now, 
the methods based on wavelet domain filtering use filter banks 
that satisfy perfect reconstruction (PR) condition. 

In this paper we want to show that for denoising purposes a 
signal can be successfully decomposed and reconstructed by 
using linear phase near-perfect reconstruction (NPR) QMF 
banks as an alternative to the well known wavelet filter banks. 
Even more, using NPR-QMF banks can yield with 
competitive or even better results. Wavelet shrinkage involves 
discarding some of the wavelet coefficients and even though 
wavelet filters satisfy perfect reconstruction condition, the 
reconstructed signal differs from the original one. Moreover, 
the transfer characteristic of some of the known wavelets does 
not have strictly linear phase. However, a linear phase NPR-
QMF bank introduces a reconstruction error which is a design 
parameter in the process of designing the filter bank and 
hence it can be chosen relatively small. So, if the error 
introduced by the NPR bank is smaller than the error obtained 
when known (PR) wavelets are used, the NPR filters can be 
considered as good filters for denoising purposes.  

The paper is organized as follows. The NPR-QMF banks 
design and wavelet theory are briefly outlined in Sections II 
and III, respectively. In Section IV we discuss advantages and 
drawbacks of NPR-QMF filters and commonly used filters. In 
Section V we compare the filters performances by denoising 
1-D and 2-D deterministic signals contaminated with signal-
dependent noise. At the end, Section VI concludes the paper. 

 

II. DESIGN OF TWO-CHANNEL QMF BANKS 

The basic block of a two-channel QMF bank consists four 
even length N linear phase FIR filters, H0, H1, F0, F1, with 
impulse responses h0[n], h1[n], f0[n],  f1[n], respectively, out of 
which H0, H1are low pass while F0, F1 are  high pass filters as 
shown in Fig. 1.   

The most commonly used filters for this realization of the 
filter bank, are the quadrature mirror filters H0, H1, F0, F1 
which satisfy the following property: 

 H1( ωje ) = H0( )( πω−je ),  

 F0( ωje  ) = H0( ωje ) , F1( ωje ) = H1( ωje ).  (1) 

Due to this property, the design problem is simplified, since 
the coefficients of all the filters are obtained from the lowpass 
prototype filter coefficients.  

In case of PR, the filter coefficients are determined by 
minimization of the error function between the output and the 
input of the bank, e(n) = uin(n)−uout(n), in the least-square 
sense. In our work we propose design of NPR-QMF filter, 
obtained by minimization of the following error function 

E = Er + αEs,          (2)  
 
subject to the filter length, N, and their cut–of frequency ωs, 
where:  Er ( )[ ] ωωω
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chosen weighting function and α is the relative weight 
between the measure of the total error signal energy, Er, and 
the measure of the error signal energy in the stop band, Es. 
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Fig.1. Two-channel filter bank. 
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III. DISCRETE WAVELET TRANSFORM 

In series expansion of discrete-time function f,  
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ψjk and φjk denote wavelet and scaling functions 

 )2(2)( 2/ ntt kk
jk −= −− ψψ , (4) 

aJk and djk are approximation and detail coefficients, and j and 
k are dilatation and translation indexes, respectively. The 
mother and scaling functions are defined by: 

 ∑ −=
n

ntht )2(2)( 1
2/1 ψψ  (5) 

 ∑ −=
n

ntht )2(2)( 0
2/1 φφ  (6) 

The estimation of djk and cJk is carried out through an 
iterative decomposition algorithm, which uses two QMF 
filters, h0 and h1.  

IV. NPR-QMF DESIGN 

The idea and motivation for using a NPR-QMF bank as a 
replacement of a PR-QMF bank in combination with the 
wavelet shrinkage denoising technique is based on the fact 
that in both cases the inherent nonlinearities of the wavelet 

filtrating technique causes reconstruction error of the input 
signal.  

In this section we are presenting characteristics of the NPR-
QMF filter designed by using the proposed algorithm in 
section II, with the design parameters: filter length, N = 12 
and its stop band cut off frequency, fs = 0.6π.  

The coefficients of designed low pass filter, h0, are given in 
Table I, while its frequency response is given in Fig. 2a. This 
filter has linear phase, good pass-band and transition band 
characteristics, but it produces certain overall reconstruction 
error, given in Fig. 2b.   

V. EXPERIMENTAL RESULTS 

In this section, we compare the efficiency of the NPR-QMF 
filter design versus PR-wavelet filter design, on basis of their   
frequency characteristics, and the efficiency of the both 
designs in signal denoising by wavelet shrinkage technique. 

The NPR-QMF filters are with filter lengths: N = 12 and 
N = 32 and stop band cut-off frequency equal to 0.6π 

The results of the comparison among the NPR-QMF filters 
and the PR wavelet filters are expressed in Table II, in terms 
of their transition band slopes calculated as a slope of their 
frequency responses among the cut-off frequency and the 
frequency for which the amplitude response is 35 dB lower 
than in the pass-band. The advantage of the NPR-QMF is 
obvious. Further more, NPR-QMF filters have better pass 
band and stop band characteristics versus biorthogonal 9/7 
and Daubechies wavelet filters in terms of their magnitude 
responses as illustrated in Fig. 3 and Fig. 4. From those 
figures and from Table II, it is obvious that NPR-QMF filters 
have better magnitude responses than both the Daubechies 
and Simlet’s family wavelet filters and they do have linear 
phase while the wavelet filters do not have.  

Comparing NPR-QMF filters and the filter that corresponds 
to the Meyer wavelet, the second is only approximation of 
FIR filter. Fig. 4b shows its impulse response. 

TABLE I 
PROTOTYPE FILTER COEFFICIENTS FROM A NPR-

QMF BANK 

h0[0−5] = 
h0[11−6] 

−0.0095 
0.1407   

0.0403 
0.6786 

−0.0126 −0.1303   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2. The magnitude responses of the prototype filter and the overall 
reconstruction error.  

TABLE II 
COMPARISON OF THE SLOPES OF THE TRANSITION 
BANDS OF THE MOST FREQUENTLY USED FILTERS 

WITH NPR-QMF FILTERS 

 ωp(×π) 
(1) 

ωs(×π) 
(2) 

a(ωp) 
(3) 

a(ωs) 
(4) 

slope (dB/rad/s)
(5=(4−3)/(2−1))

NPR QMF 
(N=32) 

0.50 0.60 −2.99 −33.23 −98.54 

NPR QMF 
(N=12) 

0.49 0.66 −2.93 −33.70 −58.99 

Db3 0.50 0.88 −2.96 −34.89 −26.28 
Db6 0.50 0.79 −3.01 −34.89 −34.54 
sym5 0.50 0.82 −2.95 −34.81 −31.86 
sym6 0.50 0.79 −3.01 −34.80 −34.54 
coif4 0.50 0.75 −3.01 −34.57 −39.87 
coif5 0.50 0.73 −3.01 −34.95 −44.49 
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The frequency responses of the filters that correspond to 
wavelets from Daubechies and Simlets families, have more 
zeros at π and the wavelet functions have more vanishing 
moments (the number is equal to the half of the filter length). 
Hence, by using such wavelet functions, the signal power is 
concentrated in small number of wavelet coefficients, which 
should be kept non-modified by the shrinkage procedure. This 
stands if the signal is smooth. More zeros at π means that 
smother signals are better approximated.  

In order quantitatively to compare the denoising capabilities 
of the designed filters we use 1D and 2D test signals shown in 
Fig. 5-left. The 1D test signal was obtained by adding a 
Poisson noise to the corresponding artificially generated 
signal (right), while the 2D test signals (right), were generated 
from the corresponding phantom images (left) by summing a 
bell shaped random 2D signals with Gaussian distribution 
around each pixel, with total intensity proportional to the pixel 
intensity on the original phantom image. Since the obtained 
test images have significantly less energy then the original 
phantom images, we normalized them before the denoising 
test.  

All test signals are denoised by using both: the NPR-QMF 
bank filter (Table I) and different types of PR wavelets, and 
the results were compared with the original signals in the 
average mean square error (MSE) sense. 

From the results shown in Figs. 6-9, it is obvious that NPR-
QMF banks are concurrent to the PR wavelet filters both for 
1D and 2D signal denoising by using wavelet shrinkage 
technique.  

 
 

VI. CONCLUSION 

In this paper we compare the efficiency of the NPR-QMF 
filter design versus PR-wavelet filters on basis of test signal 
denoising. The results show that NPR-QMF banks, designed 
by choosing low values for α ( α<10-2 ), are competitive to the 
PR wavelets, in terms of design flexibilities and their 
efficiency on denoising both 1D and 2D  signals, by using 
wavelet shrinkage technique. 
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Fig. 4. (а) Magnitude responses of NPR-QMF bank filters (N = 32, 
ωs = 0.6π) (black full line) versus responses of filters that correspond 

to Daubechies family (db2, db4, db6, db8) (grey lines); b) impulse 
response of the corresponding filter to the Meyer wavelet. 
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Fig 3. Comparison of magnitude responses of NPR-QMF and 

biorthogonal filters: (a) NPR-QMF with ωs = 0.6π and filter lengths 
N = 12 and 32; (b) biorthogonal 9/7 filters.
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Fig. 5. Deterministic signals and their noisy versions: 1D signal, 

Phantom, Circles, Bars. 
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Fig. 7. Comparison of different wavelet filters for the image Bars and 

different threshold values. 
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Fig. 6. Comparison of different wavelet filters for the 1D signal and 

different threshold values. 
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Fig. 9. Comparison of different wavelet filters for the image Phantom 

and different threshold values. 
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Fig. 8. Comparison of different wavelet filters for the image Circles 

and different threshold values. 
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