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Abstract – This paper describes an efficient algorithm for de-
signing multiplierless halfband IIR digital filters. The coefficient 
optimization is performed in two steps. The proposed procedure 
gives finite-precision solutions requiring fewer computations 
than previously reported implementations. 
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I. INTRODUCTION 

Halfband filters are important for applications to multirate 
digital signal processing. A halfband filter satisfies the pass-
band and stopband symmetry conditions [1], [2]. Both infi-
nite- impulse response (IIR) and finite-impulse response (FIR) 
filters can be used to realize these filters [3]. For applications 
requiring exact linear phase, FIR filters are used [4]. How-
ever, when the phase requirement is not as strict the IIR filters 
are the best choice as they require considerably fewer coeffi-
cients to meet the given magnitude criteria than their FIR fil-
ter counterpart [5], [6].  

Odd-order IIR halfband filters can be implemented as a 
parallel connection of two allpass filters. These filters have 
turned out to be very efficient for constructing filter banks 
since all the computations can be performed at the lower sam-
pling rate. Furthermore, this filter class is characterized by 
low coefficient sensitivity. The importance of such a structure 
is that if the effect of coefficient value deviation from the 
ideal value is small, then the short coefficient wordlength can 
be used with only slightly violating the infinite-precision filter 
specifications, resulting in a faster, smaller and less expensive 
hardware [7], [8]. 

In this paper an algorithm for designing elliptic halfband 
IIR digital filters with short coefficient wordlength is intro-
duced. This algorithm is based on the following observation: 
Finding two elliptic halfband filters, one of which has the 
minimized transition bandwidth and the second one the 
maximized stopband attenuation such that the given criteria 
are still met enables one to generate a parameter space includ-
ing the feasible space where the filter specifications are satis-
fied. After determining this larger space, all what is needed is 

to check whether in this space there exist the desired discrete 
values for the coefficient representations. In order to reduce 
the computational complexity, a genetic algorithm is applied 
for finding the solutions meeting the specifications within the 
parameter space. This strategy is general but particularly effi-
cient for filters implemented as a parallel connection of two 
allpass filters due to the fact that for these filters only the de-
nominator coefficients of the allpass sections have to be quan-
tized. Furthermore, these coefficients are represented as sim-
ple combinations of powers of two, thereby provide a low 
complexity halfband filter. In this paper, we suggest the mul-
tiplierless design with considerably smaller implementation 
cost of the filter than previously reported realizations.  

 

 
 

Fig 1. Realization of an odd-order halfband IIR filter. 

II. PROPERTIES OF ODD-ORDER HALFBAND 
ELLIPTIC IIR FILTERS 

It is well-known that odd-order lowpass halfband elliptic 
IIR filters are characterized by the following properties and 
restrictions (see, e.g., [2]). First, the design criteria for these 
filters should be stated as 
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where p and s are restricted to be related through  
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whereas the restrictions between p and s are expressible in 
terms of Ap = log10 (1(p)2) and As = log10 ((p)2), which are 
called as the passband variation in decibels and the stopband 
attenuation, respectively, as  
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Secondly, due to the fact the poles of the filter are restricted 
lie on the imaginary axis for a real-valued and stable transfer 
function, this function can be written as a parallel connection 
of two all-pass filters, according to Fig. 1, as  
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Because this contribution focuses on implementing )(1 zA and 

)(2 zA  as a cascade of Gray-Markel lattice allpass sections 
[9], they are expressed in the above form. Equally well, the 
above form suits to be implemented as a lattice wave digital 
filter [6]. 

Thirdly, when considering Eqs. (5) and (6), the following 
attractive observations are made: 1) The second allpass filter 

)( 2
2

1 zAz  of )(zH  has a first-order section that is a pure 
delay. 2) Both allpass filters contain second-order terms that 
are obtained from a first-order sections in Eq. (6) by replacing 

1z by 2z . These observations lead to the transfer function 
of order 2(m+n)+1, but it requires only m+n multipliers. The 
orders of the first and second allpass filters are M = 2n and 
N = 2m+1, which should differ by one. This implies that either 
n = m or n = m+1.  

III. STATEMENT OF THE PROBLEM 

Before stating the optimization problem, the transfer func-
tion of the halfband filter is denoted for later use by H(, z), 
where  is the vector containing the adjustable filter parame-
ters c  for   = 1, 2, …, m+n. According to the discussion of 
Section II, given the minimum stopband attenuation As and the 
stopband edge angle s, the magnitude specifications for the 
odd-order halfband elliptic filter are given as 
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This work concentrates on coefficients quantization in 
fixed-point arithmetic. In VLSI implementations, where 
general multipliers are very costly, it is attractive to carry out 
the multiplication of a data sample by a filter coefficient value 
using a sequence of adds (subtracts) and shifts. For such a 
purpose, the coefficient values are expressed as  
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where each ra  is either 1 or 1 and the rP ’s are nonnegative 
integers in the increasing order. In this case, the aim is to find 
all the coefficient values so that, first, R, the number of pow-
ers-of-two terms, is made as small as possible, and, sec-
ondly, rP , the maximum number of shifts, is made as small as 
possible.  

An estimate for the implementation cost of the filter can be 
calculated as a sum of the number of the adders and sub-

tracters used to implement all the filter coefficients, that is, the 
cost is given by  
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where the  ’s are the number of adders and subtracters re-
quired to implement the filter coefficients c . 

The optimization problem under consideration is the 
following: 

Optimization Problem: Given As and s, find m and n, and 
the adjustable parameter vector  such that, first, the criteria 
of Eq. (7) are met after quantizing the coefficient values 
corresponding to the parameters included in  to achieve the 
above-mentioned form for their representations and, then, the 
implementation cost, as given by Eq. (9), is minimized. 

IV. FILTER OPTIMIZATION 

The solution to the stated optimization problem can be 
found in the following two-step procedure. In the first step, 
the stopband edge angle is minimized such that the resulting 
stopband attenuation achieves just the specified value in 
Eq. (7) and the stopband attenuation is maximized such that 
the resulting stopband edge angle achieves just the specified 
value in Eq. (7). This enables one to find the parameter space 
of the infinite-precision coefficients including the feasible 
space where the filter meets the requirements. The second step 
involves finding the filter parameters in this space using a 
genetic algorithm such that the resulting filter meets the given 
criteria with the simplest coefficient representation forms. 

A. Optimization of Infinite-Precision Filters 

It has been turned out that the desired parameter space for 
the filter coefficients can be conveniently generated by 
designing two infinite-precision elliptic halfband filters, which 
satisfy the specifications as follows: 
Design 1: The stopband edge angle is minimized in the 

criteria of Eq. 7 such that the stopband attenuation reaches 
just the specified value. 

Design 2: The stopband attenuation is maximized in the 
criteria of Eq. 7 such the stopband edge angle reaches just 
the specified value. 

These designs can be obtained by using simple closed-form 
algebraic expressions [3]. The parameter vectors containing 
the optimal infinite-precision filter parameters for Designs 1 
and 2 are denoted by )1( and )2( , respectively, whereas the 
corresponding sets of the coefficients values for the filter 
transfer function under consideration are denoted by )1(

c ’s 

and )2(
c ’s. Based on these set of coefficients, the smallest and 

largest values for the filter coefficients can be determined as  

      ,max   and ,min )2()1((max))2()1((min)
lll cccccc  

(10)

for   = 1, 2, …, n+m. 

B. Optimization of Finite-Precision Filters 
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It has been experimentally proved that the parameter space 

defined above forms a very good approximation for the 
feasible space where the filter criteria are met. After finding 
this parameter space, all what is needed is to find in this space 
the existing combinations of the discrete coefficients values 
which satisfy the given requirements. 
This search can be done in a straightforward manner [6], [7] 
by first finding the sets of powers-of-two numbers lC  for 
  = 0, 1, …, n+m between the smallest and largest values of 
each coefficient ( (min)

lc and (max)
lc ). 

The magnitude response is then estimated for each combina-
tion of the )(k

lc  for   = 1, 2, …, n+m and k = 0, 1, …, K  to 
check whether the filter meets the given criteria. Here, the 
number of powers-of-two values between (min)

lc  and (max)
lc  is 

denoted by K , whereas the kth existing discrete value be-

tween these smallest and largest values is denoted by )(k
lC  for 

k = 0, 1, …, K . The number of discrete coefficient value 
combinations is thus given by  

 


mn K1  . (11)

The number of discrete coefficient value combinations can 
be huge. For this reason it is beneficial to use a genetic 
algorithm for searching those discrete coefficient values with 
which the specifications are satisfied. This discrete-valued 
optimization problem can be efficiently solved by utilizing a 
genetic algorithm as follows: First, the indexes of the power-
of-two numbers between the smallest and largest values of the 
coefficients are represented using a binary code. Furthermore, 
a lookup table containing the power-of-two values of the 
corresponding indexes is generated. The next step is to 
construct the chromosomes by concatenating all these binary 
strings. At the end, the fitness of the population is evaluated 
by decoding the chromosomes to their corresponding power-
of-two coefficients values using the above-mentioned lookup 
table. 
The fitness function to be maximized is given by  

  ,/,/max ssppf    (12)

where p  and s  are the realized passband and stopband 
ripples, respectively. The solution meeting the given criteria is 
obtained when f becomes greater than or equal to minus unity. 

V. DESIGN EXAMPLE 

Consider the following criteria for an odd-order IIR half-
band filter [8]: p = 0.44  and 46sA  dB. The rest of the 
filter criteria are found using Eqs. (2) and (3), which give 
s = 0.56 and Ap = 1.1104 dB. These specifications are met 
by a ninth-order elliptic halfband IIR filter. 

The infinite-precision coefficient values of the two elliptic 
halfband initial filter designs are given in Table 1. In this ta-
ble, )1( and )2( are the optimal coefficient values for De-
signs 1 and 2, respectively. The corresponding magnitude re-
sponses for the initial filters are shown in Fig. 2. 

 

Fig.  2. Magnitude responses for the initial filters. 

TABLE I 
INFINITE-PRECISION COEFFICIENT VALUES FOR THE INITIAL DESIGNS 

 (min))1(   (max))2(   
1c  0.4653 0.3440 

2c  0.9204 0.8686 

3c  0.1535 0.1022 

4c  0.7342 0.6145 
 
For the corresponding finite-precision filter only three pow-

ers-of-two terms (R = 3) and eight fractional bits ( RP  = 8) are 
required to fulfill the given criteria. Тhe number of bits 
needed to encode all permissible discrete values between the 
smallest and largest values of c for   = 1, 2, …, 4 for this co-
efficient representation form are 5, 3, 4 and 4, respectively, 
that is, the length of the chromosome is 16. For more details 
of the above encoding, see [7]. 

TABLE  II 
PERFORMANCE OF THE GENETIC ALGORITHM 

sP =0.04 

xP  mP  meanf  stdf  hitN  
0.6 0.04 1.4871 0.4393 9 
0.6 0.05 1.1253 0.0882 18 
0.6 0.06 1.0929 0.1706 21 
0.7 0.04 1.2308 0.2788 11 
0.7 0.05 1.0834 0.1260 31 
0.7 0.06 1.0659 0.1129 26 
0.8 0.04 1.1977 0.1445 14 
0.8 0.05 1.1042 0.1723 28 
0.8 0.06 1.0820 0.1100 33 

sP = 0.045 
0.6 0.04 1.2661 0.2876 10 
0.6 0.05 1.0956 0.183 21 
0.6 0.06 1.0674 0.1085 25 
0.7 0.04 1.2401 0.2764 11 
0.7 0.05 1.0705 0.0956 30 
0.7 0.06 1.0568 0.0873 35 
0.8 0.04 1.2035 0.2693 12 
0.8 0.05 1.0861 0.1189 26 
0.8 0.06 1.0603 0.1067 29 

 
 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

229



 

 
TABLE III 

OPTIMIZED FINITE-PRECISION COEFFICIENTS VALUES OF THE         
ELLIPTIC HALFBAND IIR FILTER 

)(1 zA  )(2 zA  

1c  31 22    3c  73 22    
2c  83 221    4c  631 222    

 

 

 

Fig.  3. Magnitude response of the resulting multiplierless  
halfband IIR filter. 

The control parameters of the genetic algorithm such as 
crossover and mutation rates have been adjusted by, first, run-
ning this algorithm 100 times with different parameter settings 
and, then, selecting the most optimal ones. Some of them are 
shown in Table II. These results were obtained under the fol-
lowing circumstances. The normalized geometric selection 
was used as a reproduction operator, the population size was 
150, and the number of generations was 250. In this table, 

sP denotes the selection probability, xP  and mP  are the cross-
over and mutation rates, respectively, whereas meanf , stdf  
and hitN give, after these 100 runs, the mean fitness, the stan-
dard deviation of the fitness, and the number of solutions 
meeting the requirements, respectively. The fitness value of 
the best solution after these 100 runs was always the same that 
is, f = 0.932. The CPU time required for running one run was 
approximately 18 seconds when using the genetic algorithm 
optimization toolbox [10] in MATLAB 6.5 on a 3 GHz Pentium 
4. The CPU-time required to evaluate all the possible coeffi-
cient value combinations was approximately 12 minutes. 

For the optimized finite-precision filter in [8], four powers-
of-two terms (R = 4) and eight fractional bits ( RP  = 8) are re-
quired to meet the given filter specifications and the number 
of adders and/or subtracters needed to implement all the coef-
ficients for the Gray-Markel sections is eight. The proposed 
algorithm results in the optimized filter, which requires only 
six adders and/or subtracters to implement all the multipliers. 
The optimized coefficient values are shown in Table III. The 
magnitude response of the resulting multiplierless halfband 
IIR filter is displayed in Fig. 3. The corresponding realization 
is shown in Fig. 4. 

 
Fig. 4. Realization for the resulting multiplierless halfband IIR filter.  

VI. CONCLUSION 

A straightforward two-step scheme has been developed for 
designing multiplierless halfband IIR digital filters. The first 
step determines a parameter space of the infinite-precision 
coefficients including the feasible space where the filter meets 
the given criteria. The second step uses genetic algorithm for 
finding the coefficients in this space such that the given 
criteria are met by the simplest representation forms. The 
efficiency of the proposed procedure has been demonstrated 
by means of an example. 
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