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Abstract – This paper introduces a new algorithm for the 
detection of voiced speech, which functions as a classifier for 
frames of recorded speech. In this context, that means that it 
decides whether or not the frame contains good quality voice 
data as the frame could contain silence, unvoiced speech, or 
degraded speech which would be unusable without additional 
processing. The problem considered in this paper is a very 
important one and many classical methods exist for solving it. 
Regardless of the possible advantages of these methods, they all 
suffer from one major drawback – their efficiency is low, which 
necessitates some degree of post-processing in order to achieve a 
high recognition ratio. The Support Vector Algorithm achieves 
an excellent classification of voiced and other speech frames by 
the use of nonparametric classification and training. 

Keywords – support vector machine, speech recognition, 
classifying of voiced speech frames.  

I. INTRODUCTION 
There are two main types of algorithms used in classifiers: 

parametric ones, in which a priori knowledge of data 
distributions is assumed, and non-parametric ones, in which no 
such a priori knowledge is assumed. 

Neural networks, fuzzy systems, and support vector 
machines (SVMs) are typical non-parametric classifiers. 
Through training using input-output pairs, classifiers acquire 
decision functions that classify an input datum into one of the 
given classes [1]. 

SVM are preferred to neural-networks, because of their better 
generalization ability in speech processing. Three-layer neural 
networks are universal classifiers in that they can classify any 
labeled data correctly if there are no identical data in different 
classes. In training multilayer neural network classifiers, 
network weights are usually corrected, so that the sum-of-
squares error between the network outputs and the desired 
output is minimized. However since the decision boundaries 
between classes acquired by training are not directly 
determined, classification performance for the unknown data, 
i.e. the generalization ability, depends on the training method. 
And it degrades greatly when the number of training data is 
small and there is no class overlap.  

Conversely, in training support vector machines the decision 
boundaries are determined directly from the training data so 
that the separating margins of decision boundaries are 
maximized in the high-dimensional space called feature space. 
This learning strategy minimizes the classification errors of the 
training data and the unknown data.  
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On the other hand, speech recognition by humans does not 
pose a problem [2]: One can understand very well that 
something has been said, even if its information is lost, for 
example due to loud ambient noise, or when a language, not 
known by the listener, is spoken. In practical applications this 
detection of a signal’s voiced frames is very useful. It can be 
employed in speech databases, where the type of a speech 
should be automatically determined for additional information 
generation and context-based indexing, or in full automatic 
speech recognition systems. In the latter case, the room where 
the acoustic signal propagates is scanned with the aim of 
recognizing one particular speaker.  

Early work in speech/non speech signal classification was 
carried out, for example, by Hoyt and Wechsler [3]. This 
research uses a common architecture of signal classifiers: The 
incoming signal is segmented into frames; discriminative 
features are extracted and finally classified. Classification of the 
latter with support vector machines reportedly achieved a 
recognition rate in excess of 99% [4].  

II. SUPPORT VECTOR ALGORITHM 
Speech is a phenomenon which constantly changes with 

time. One approach to registering the non-stationarity of the 
speech signal is to process it as a temporal sequence of an 
alphabet of states. The concept beyond the suggested speech 
detection algorithm is that non-speech signals, which are non-
stationary, produce sequences different from those found in 
speech [5, 6]. This is true, when using the same alphabet for 
speech and non-speech signals. It is well known [2] that non-
speech signals which are stationary are very easy to recognize. 
Some new efficient methods suggested in [7, 8] can be used. 

The parts of speech considered here are voiced frames, the 
most important components of which are phonemes. In 
normal speech these are combined to form syllables, words, 
phrases and more complicated structures. The most important 
property of voiced-frame detection is the syllabic structure: 
Normal speech changes constantly between vowels, which are 
contained in frames with high frame energy, and other 
phonemes with lower frame energy. Both the vowels and all 
other types of phonemes possess different spectral features. If 
a classification algorithm is based on phonemes, then vowels 
are most conveniently incorporated into a frame model: The 
support vector machine will discriminate between voiced-like 
and unvoiced-like frames in certain temporal sequences.  
The experiment to derive the speech recognition algorithm 
was composed of four stages: (1) frame extraction, (2) 
cepstral Linear Prediction Coefficients (LPC) extraction, (3) 
segmentation of voiced-unvoiced frames and (4) training and 
classifying with the support vector algorithm – (Fig.1). 
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Fig.1: Support Vector Algorithm 

III. CLASSIFICATION  
In the initial frame extraction step, the signal is recorded at 

a sampling frequency of 11025 Hz. This is a very good 
sampling frequency for speech signals, since the frequency 
spectrum of these seldom exceeds 5 kHz. It also provides 
good speaker differentiation, compact and de-correlated 
representation of the signal and computational efficiency. 

Next, the signal is windowed into frames of 23 ms or 253 
samples. The frames are then multiplied by a rectangular 
window. Whichever window is taken for frame smoothing, 
there is always a problem with the samples located on both 
edges of the frame; their spectrum, and hence their energy, is 
attenuated by the window. For this reason a half-time overlap 
of the frames has been chosen. This means approx. 11 ms, or 
126 samples of the signal. As classification features, linear 
prediction cepstral coefficients of order 16 were chosen. This 
employs the well-known formula: 

 )54( orFM s   (1) 

where M is the number of the cepstral LPC coefficients, sF is 
the sampling frequency in kHz. The first term in the equation 
accounts for proper representation of sF  poles from the all-
pole of the vocal tract, and the 4 or 5 poles are added for 
better modelling of the glottal pulse in the voiced case. 

The cepstral LPC coefficients have been evaluated, using 
the recursive formula: 
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where m is the size of the window used, n is the current 

number of the coefficient. 0


 is the first sample of the all-
pole filter model of the vocal tract, a is the LPC coefficient, 
and y is the cepstral LPC coefficient. 

Next, points of maximal acoustic change (acoustic 
landmarks) should be evaluated. 

As a basis for the detection of acoustic landmarks, a 
Euclidean distance measure between the cepstral coefficients, 

ic , of frames with a certain time difference, is employed: 

 
2kiii ccd   (3) 

where k is the time difference between the frames, and i is the 
current frame. In this paper, the time difference is set to 
approximately 11 ms, or 126 samples (i.e., k=1). The peaks of 

id  can be interpreted as points where the signal spectrum 
exhibits more significant changes compared to the vicinity, 
such as phoneme boundaries or instants of rapid spectral 
change in interferences. Measures like id  in general produce 
a huge number of peaks which are not easy to analyse. In this 
case, smoothing might be preformed: The frame-to-frame 
Euclidean distance is convolved with a “Mexican hat” 
function: 
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This is the popular second derivative of a Gaussian, with 
standard deviation   set to 3,6 ms. The peaks of the resulting 
acoustic change function are interpreted as acoustic landmarks 
and used for segmenting the waveform if they exceed a 
certain threshold (see Fig.2). 

 
Fig.2: Speech Signal and Acoustic Landmarks 

Classification of each frame is performed with a support 
vector machine. A kernel, based on Radiant Based Function 
(RBF), has been used for the classification. The analytical 
expression of the latter is: 

 )'exp()',(
2xxxxH   (5) 

where the operator  denotes the Euclidean distance, and 

'x means in general different variable than x . The parameter 
  controls the radius of the function. Its typical values are 

from 19.0   [1]. In our case it is set to 1. The method for the 
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 evaluation of the separating hyper plane has been set to Least 
Squares. Thus the SVMs are able to discriminate between 
classes via topologically complex hyper planes and are 
computationally efficient at the test stage. The target classes 
are {voiced, unvoiced}. 

IV. EXPERIMENTS AND DISCUSSIONS  
For the experiment a private database has been used. 3000 

frames from 30 different speakers have been classified. 300 
frames were used for training the support vector machine, and 
the other 2700 were used in classification. 

One utterance from the upper is shown in Fig.3. 

 
Fig.3: Example for a male utterance. The red straight line represents 

the voiced frames, and the blue dotted line – the unvoiced ones 

 
Fig.4: Training of the support vector machine. The red crosses on the 
left side represent the unvoiced frame energies, and the green crosses 

on the right side represent the voiced frame energies 

The training phase produced the results shown in Fig 4. As 
can be seen from the latter, this first phase of the classification 
algorithm has been very effective. The frame energies lie far 
enough apart from each other to draw a parabola between the 
two classes and to separate them easily.  The classification 

phase for the utterance from Fig.3 is shown in Fig.5. As 
expected, the separating parable performs well in separating 
the two target classes. This can be seen if we show how a 
classical algorithm performs against the support vector one. 
As a classical approach, the Spectral Auto-Correlation Peak-
to-Valley Ratio (SAVPR) has been chosen, for its simplicity 
of implementation. It is a parametric approach, meaning that it 
doesn’t need training [5, 6]. 

 
Fig.5: Classifying with the support vector machine. The red and 
magenta crosses on the left side represent the unvoiced frame 

energies, and the green and cyan crosses on the right side represent 
the voiced frame energies 

The classification with the SAVPR method for the 
utterance is shown on Fig. 6, the one with the SVM is shown 
in Fig. 7, and both are plotted together on Fig. 8. As can be 
seen, the performance of the support vector algorithm is much 
better than that shown by the spectral auto-correlation peak-
to-valley ratio algorithm. After the classification, using the 
database mentioned at the beginning of the chapter, the 
following results were obtained, demonstrating that the 
overall performance of the SVM is better [6] (TABLE I). 

 
Fig.6: Classification with the spectral auto-correlation peak-to-valley 

ratio 
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 TABLE I 

 Classification with 
the SAVPR algorithm 

Classification with 
the SVM algorithm 

Male 
speech 

61.70 % 92.40 % 

Female 
speech 

60.10 % 91.50 % 

 
Fig.7: Classification with the spectral SVM 

 
Fig.8: Classification with the SAVPR (low red logical signal) 

and SVM (high black logical signal) 

V. CONCLUSIONS 
The support vector algorithm has shown some very good 

features in the recognition of voiced speech segments – it is 
non-parametric, requires a small amount of training data and 
is computationally very effective. In comparison with 
classical approaches it performs much better, suggesting, that 
is can be used in “speech overlap detection”. This is where 
two or more people speak simultaneously and recognition of 
one of the speakers is required. The future work of the authors 
is to utilize the support vector machine in the field of speech 
overlap detection. 
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