

The realization of the OO database in the specific
CAD/CAM applications
Dejan S. Aleksić1, Dragan S. Janković2

Abstract – This paper describes the realization of the object-

oriented database in the specific CAD/CAM software package
supporting the design and manufacturing of the facade
carpentry. The application of this software package creates a
number of limitations and problems for whose solution a class
group Attr API was created. Attr API class allow us to
generating the various application variants, starting from the
usual desktop application, to the client/server and Internet
variant application.

Keywords – CAD/CAM database, object-relational mapping,
OODB, design and manufacturing of the facade carpentry.

I. INTRODUCTION

Specialized CAD/CAM programs commonly solve a small
number of problems. They are justified as long as they meet
the user's needs and solve the problem they were created for.
On the other hand, narrowing of the application range does
not necessarily lead to decreasing the number of solutions
general enough to be used in all other/future applications
within the specific area.

This paper illustrates the realization of the object-oriented
database in the CAD/CAM software package supporting the
design and manufacturing of the facade carpentry [1].

Tha facade carpentry is made out of a number of profiles
and items together with the corresponding parts needed to join
and assemble them. Profiles may be made of various materials
such as aluminium, PVC, wood, iron, or their combinations
(aluminium-wood, PVC-aluminium). There is a great number
of profile manufacturers, each of them producing lots of
profile systems. All profile systems are supposed to abide to
the general rules and standards, and yet, each one of them has
its own specific characteristics which make it unique. It is
precisely because of this that the software packages
specialized in giving support in that area should, beside the
obviously narrowed application area, offer the solutions
general enough to accept and process all the specific
characteristics of a profile system. A particular difficulty
arises from the fact that it is almost impossible to foresee all
the specific solutions in the profile systems which are likely to
appear in the future and which must undoubtedly be
supported by such software paskages.

1Dejan S. Aleksić is with the Faculty of Sciences and

Mathematics, University of Nis, Visegradska 3, 18000 Nis, Serbia,
e-mail: dejan_aleksic@yahoo.com.

2Dragan S. Janković is with the Faculty of Electronics, University

of Nis, Aleksandra Medvedeva 14, 18000 Nis, Serbia,
e-mail: dragan.jankovic@elfak.ni.ac.yu.

II. THE CHARACTERISTICS OF APPLICATION

The application of this kind of CAD/CAM as well as its
users creates quite a number of characteristics and limitations
[2]. We will deal with the most characteristic ones in this
paper.

The information concerning the profile systems must
undoubtedly be kept in the database; yet, writing in the base
occurs rarely whereas reading of the same data is quite
intensive, so that the base is Read Only DB in most of the
cases. Besides the need for intensive reading of the relatively
small amount of data, the critical factor is the reading speed
which directly affects the speed at which the main evaluation
module works. The factor of the data access speed to the
profile system is one of the most significant ones which
should be considered with the utmost care in the realization of
such an application [3].

It has already been mentioned that there are a great number
of profile systems having a lot of common characteristics and
rules which will certainly be valid for all future profile
systems. Apart from having the common characteristics, each
profile system possesses some specific traits which make it
different/unique compared to other systems. It is almost
impossible to foresee which characteristics some future profile
system will have. The second important factor is the
possibility to modify the existing application so that it could
accept the specific characteristics of the new systems.

 Besides the profile systems data, the manipulation with the
particular projects data should be attained. The project data
may be kept either in the database or on the disk as an
independent file [4]. The project data are usually stored in the
base in the server/client software variant, but in case of
physically separate representatives or operations, the variant
of storing the projects into the data bank is used. Each project
contains some data concerning the profile system which are
practically the copy versions of these data stored in the
description base of the profile systems. It is precisely this
doubling of the data in the base and projects with the aim of
maintaining them (the data changes by number and type, the
content changes or the version improvement) and the
synchronization after the changes that represent the problem
we encounter next.

We are rather inhibited concerning the database choice by
the fact that these applications are mainly used by small firms
with an insufficient knowledge regarding the database and
system maintainance, and by the fact that those applications
are supposed to be of a reasonable price.

In accordance with what has been mentioned previously, it
is clear that the description of the profile systems and the rules
within them will be performed (with rare exception) not by
the users themselves, but that the application will have to be

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

255

 delivered with the already ’filled’ bases for the particular
profile systems. Such a ’centralized’ maintainance of the
profile system description and rules database requires a very
sophisticated version improvement system of both the
database and the application itself.

The multilingual support of the UI application characterizes
every resourceful software package and there are quite a
number of ’ready-made’ solutions for its realization. The
problem we encounter arises from the fact that the data stored
in the profile system description base have to be translated.
The substantial complexity of the system descriptions, their
great number and the necessity to support a rather large
number of languages make the simple creation and
maintainance of the separate base for each profile system and
each language impractical and almost impossible.

Concerning the great number of systems, the complexity of
the project data processing and the complex report system, it
is clear that a hierarchical organization of the data within both
the system description base and the project itself is needed.

III. THE SYSTEM DESCRIPTION USING ATTR API

Regarding the mentioned facts, we chose the open source
relation database FireBird. Since this database is available to
lots of OS platforms the easy migration from the single user
variant to the client/server variant was created. Thus all the
requirements concerning the availability, price, easy
installation and maintainance were fulfilled.

Unfortunately, such a choice brought about some
limitations especially those regarding the fixed number of the
fields within the tables and the beforehand defined data types,
as well as the data reading speed. Our soulution was based on
the creation of a separate group of objects within the
application itself that gave us flexibility concerning the
number and type of the entity descriptions data, but with the
realized mechanism for the data type check. The basis of this
approach is the usage of the so called attribute, i.e. the base
class tAttribute with the group of its descending classes. Each
entity can be described using the arbitrary number of
attributes, and each attribute has its type and the momentary
value from the list of possible values. Such an approach
created a number of advantages, such as the easy realization
of some small and yet big enough differences in the profile
system description, the multilingual concept support within
the base, the easy improvement of the existing database
version, the automatic copying of the database into the
memory structures and the disk and vice versa [5], the quick
and easy project data recording and input onto/from the disk,
the automatic data improvement in the base, the possibility to
realize the automatic improvement of the recorded project
data in accordance with the data changes in the base
concerning their value, number and type, the realization of all
the advantages created by the object-oriented data approach
(data abstraction, inheriting, attribute overburdening) over the
data stored in the base, memory or disk.

All the manipulations concerning the input, changes and
reading of the attributes were realized within the tAttributes
class and tAttributeList.

IV. THE ATTR API REALIZATION

The Attr API itself contains a number of classes but its total
functionality can be presented through the three main classes -
tAttribute, tAttributeList and tXalNode with their descending
classes. The basic functionality when working with attributes
was realized in the base class tAttribute. Precisely speaking,
class tAttribute, being the base class, does not contain much of
the functionality but it only defines the basic variables and
methods (virtual and abstract) that will be copied and realized
in one of the descending classes tAttrString, tAttrInteger,
tAttrReal and tAttrBoolean (see Fig. 1.). Initially, the support
for the four basic data types was realized, although it is
possible to realize the support for some arbitrary data type
through the new hereditary tAttribute class.

Fig. 1. Inherites tree of base class tAttribute

The second basic class is tAttributeList by which the
keeping and manipulation of the attribute list was realized,
more precisely of the instances of the base class tAttribute,
i.e., its descending classes. The number of attributes, their
type and value may be completely arbitrary.

The third crucial class of Attr API is tXalNode as the
hereditary class descending from the class tList (see. Fig. 2.).
Its primary task is the formation and manipulation of the basic
hierarchical structures. Each instance of this class represents
the knot of the hierarchical structure. Each knot of that
structural tree has its own list of attributes which describe its
state [see Fig. 2.].

tXalNode = class (tList)
 fAttributeList : tAttributeList;
 fXalChildNode : tXalNode;
 .
 .
 .
end;

Fig. 2. tXalNode - crucial class of Attr API

The Attr API classes make possible the hierarchical
organization and processing of the data stored in the memory
as a group of objects – instances of those classes. The data
access is quite quick in that case, but the need for a permanent
keeping of those data still remains. The input/read process of
the hierarchical structure of the Attr API objects in/from the
base was completely realized within the basic classes, which
is completely transparent for the class’ users. All the data,
together with their hierarchichal structure, no matter how
complex it may be or what type or number of attributes are
stored in it, are put in only three tables within the relation

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

256

 database (see Fig. 3.). Furthermore, if lots of hierarchical
structures are defined in one application (using Attr API
classes), then all of them are placed in the same database in
the already mentioned three tables.

Fig. 3. Relationship between data in relation database and memory

(in class of Attr API)

It is important to emphasize the possibility of the easy
creation of the complex hierarchical structures by using the
classes from Attr API. The user creates the new classes by
commonly inheriting the class tXalNode. The additional
functionality is realized by copying the methods from the
parent class and by creating the new methods. The data in
those newly defined classes ’are kept’ in the attribute list
(class tAttributeList) which makes the input/read process of
the data in/from the base completely transparent for the user
because it has already been realized in the base classes. On the
other hand, the user has an absolute freedom in its own class
while creating the attributes concerning both their number and
their type or values.

Fig. 4. The profile system description data

The Fig. 4. shows the hierarchical structure created for the
manipulation with the profile system description data. The
data from this structure are typically edited with a special
program (ConstInfo Manager) and are put into the database.
The main application only reads the data from that structure
so that they are quite often cashed because of the data reading
speed.

The second example is the hierarchical structure which
manipulates the project descripition data (see. Fig. 5.).

Fig. 5. The hierarchical structure for the project descripition data

Depending on the configuration of the main application,
this structure is placed in the file on a disk (common/classical
application) or in the database (client/user application). The
total functionality has already been realized in both cases in
the base classes of Attr API, while the user himself has to
decide where the data will be stored.

Generally speaking, the hierarchical structures of the Attr
API objects can be recorded/input into the various forms and
formats. The first of them is the usage of some of the relation
databases, the choice of database not depending on the
functionality. It is possible to read from one relation database
within the same application and to write the processed data
into the relation database of some other manufacturer. These
operations are completely transparent for the Attr API class
users. The working speed makes possible the updating of the
data of a particular part of the hierarchical structure from the
memory into the database without writing in all the data of
that structure. Using the file on a disk for storing the object
hierarchical structures is another way of permanently keeping
the data from the Attr API objects.

Fig. 6. Attr API objects can be recorded/input into the various forms

Several write-in data formats in the file on a disk are
supported (see Fig. 6.) depending on the users’ needs. Each
one of the formats has its own advantages and disadvantages
concerning the crucial parameters, such as the speed of
write/read (internal format), the uncomplicated exchange of
data with other general programs (CVS format) or in self-desc
format (XML). A possibility of the automatic data copying
creation from the database into the file on a disk should be
particularly emphasized, since it is frequently used for cashing
of data on the client side.

The data availability on the Internet with the maximum
possible protection is realized by the special modules so that
client can exchange data with the server side. The premise of
the transparency of the way of keeping and accumulating data

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

257

 is completely maintained and it is realized without any
additional actions on the part of the users.

Fig. 7. One common application

This fact allows us the easy realization of the various
configuration applications. The Fig. 7. illustrates one common
application which uses Attr API for keeping and manipulating
with the data. There are three different hierarchical structures
– the project data, the profile systems data and the report
generating data.

In this case, the project data are stored in the file on a disk
while the profile systems data (read only) are usually
automatically cashed from the database into the file on a disk.

Fig. 8. The client/server variant of application

The data needed for the report generating are stored in
either temporary file on a disk or the database itself,
depending on the fact whether the user wants to have the
reports available later or not. The possibility of the module
realization for the report generating not depending on the
main application version appears to be an additional
advantage. Since the data format is not fixed, and concerning
the fact that it is possible to detect the existance of the
particular attribute in the hierarchical structure by using the

Fig. 9. The web client/server variant of the application

program, then the report generating of various forms becomes
quite easy.

The advantages of using Attr API are particularly evident if
we want to realize the client/server variant of our application
(see Fig. 8). All we need to do is to define the place and way
of storing the data in the configuration Attr API. It is
important to point out that it is not necessary to change the
remaining part of the application which manipulates the
hierarchichally organized data. Following the given logic, the
realization of the web client/server variant of the application is
not too complicated. The server page has to undergo minimal
changes in the logic, whereas the situation is quite similar on
the client page, apart from the fact that the main application in
the web client variant and Attr API are realized in the Java
program language.

V. CONCLUSION

This paper illustrates the realization of the object-oriented
database in the CAD/CAM software package for the support
of the design and manufacturing of the facade carpentry. The
application of this software package creates a number of
limitations and problems for whose solution a class group Attr
API was created. It gives us a necessary flexibility concerning
the entity description data number and type with the
possibility of checking the data types. Each entity may be
described using an arbitrary number of attributes which have a
defined type and value from the list of the possible values.
This attribute concept offers a number of advantages
concerning the modelling of small but considerable
differences in the description of profile systems. The classes
of Attr API allow for the hierarchical organization of the
attributes for the profile systems or project description. The
process of write/read hierarchical structure of the Attr API
objects in/from the database is completely transparent for the
Attr API users. Generally speaking, the hierarchical structures
of Attr API objects can be save/load in various forms and
formats (RDBMS, memory, file system, Internet, ...).

All these facts allow for a relatively easy generating of the
various application variants, starting from the usual desktop
application, to the client/server and Internet variant
application.

BIBLIOGRAPHY

[1] Q. Zhang, "Object-oriented database systems in manufacturing:
selection and applications", Industrial Management & Data
Systems, vol. 101, no. 3, pp. 97-105, 2001.

[2] M.L. Brodie, B. Blanstein, U. Dayal, F. Manola, A. Rosenthal,
"CAD/CAM Database Management", IEEE Database
Engineering, Vol.7, No.2, pp. 12-20, June 1984.

[3] D. Maier, "Making database systems fast enough for CAD
applications", Object-oriented concepts, databases, and
applications, ACM Press, New York, NY, 1989.

[4] Ying-Kuei Yang, "An enhanced data model for CAD/CAM
database systems", Proceedings of the 25th ACM/IEEE
conference on Design automation, pp. 263 - 268, 1988.

[5] M. Blaha, W. Premerlani, H. Shen, "Converting OO Models
Into RDBMS Schema" IEEE Software, vol. 11, no. 3, pp. 28-39,
May/June 1994.

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

258

