
 The use of scripts in a CAD/CAM database
Dejan S. Aleksić1, Dragan S. Janković2

Abstract – Definition and the execution of combining profiles
in profile systems represent one of the key problems in a specific
CAD/CAM application for design and manufacture of facade
carpentry support. General rules which are common for all the
systems are executed within the application. Main mechanism of
accomplishing specific rules of combining is comprised of
executing scripts affiliated to elements on the lowest hierarchy
level of profile system within the database. The script language is
specially created for this use and concepts enable us to relatively
easy model the rules of combining of some new system with all
the specifics it carries with it.

Keywords – Scripts , OODB, CAD/CAM, Object-oriented

computing, facade carpentry

I. INTRODUCTION

Specialized CAD/CAM programs usually serve as a
solution for only a narrow specter of problems. To justify its
existence, they must be maximally adjusted to the user and
optimized for the problem they are used for. On the other
hand, narrowing its area of usage does not necessarily mean
that such programs do not need general enough solutions so
that they can be applied to all other/future uses from that area.

Throughout this work, we will illustrate one object-oriented
database in a CAD/CAM software package for the project
support and the manufacture of the facade carpentry.

During the process of the facade carpentry creation a cluster
of profiles and fillings are used, together with the associated
parts for their connection and assembly. Profiles must be
made of different kinds of materials such as aluminum, PVC,
wood, iron or their combination (aluminum-wood or PVC-
aluminum). There are lots of profile manufacturers and each
of them has a number of profile systems that are used and
manufactured. All the profile systems must follow certain
general rules and standards, but, on the other hand, each one
of them has some specific characteristics which make them
unique. This is the reason why software packages specialized
for the support in that area, beside beyond doubt narrowed
field of application, must have enough general solutions to
acquire and process all of the specifics of a profile system.
Special difficulty lies in the fact that it is almost impossible to
foresee all the specific solutions in profile systems which can
appear in the future and which must certainly be supported by
these software packages.

II. THE PRINCIPLE OF ONE APPLICATION –
MULTIPLE BASE

By analyzing qualities of the elements and rules of
combining, certain laws might be noted which govern all the
profile systems. However, each of the profile systems has
certain specifics which make it different compared to a
competition’s product. Systems basically never differ more
than 5% to 20% depending on the material, area of use and the
manufacturer.

In order for a CAD/CAM application to be applied to a
design process and the manufacture of windows and facades,
all the elements of the system must be described, and all the
rules for their combining must be carried out. The storage and
organization of that data is the first problem that needs to be
solved.

Being unable to generalize all the rules within the profile
system presents the main problem. That problem has been
solved in multiple ways. One way is the existence of multiple
application versions – one application for each profile system;
or that the general rules are executed within the application
itself and all the specifics of certain systems are being
accomplished through external additional modules. Both
suggested solutions posses obvious flaws – firstly in terms of
application maintenance, ease of new profile system data
input and the crucial one – defining new rules of profile
combining.

In our case. general rules are executed within the
application itself as well, but all the certain profile system
specifics are recorded in the database. This is mainly
accomplished by the strict hierarchy in the element
organization, by introducing attributes for the element
description and by defining and executing scripts (they are
being kept in the database and executed within the application
itself). So, during description of a new profile system only
data within the database is being altered while the main
application remains unchanged for all the systems, which
leads to the principle of one application – multiple base.

III. DESCRIBING A SYSTEM USING ATTRIBUTES

All the data for the description of elements, as well as rules,
are kept in a standard relational database. We have chosen an
open-source database – Firebird to satisfy the needs in terms
of availability, price, ease of installing and maintenance.
Unfortunately, this kind of choice has certain limits such as:
fixed number of fields inside tables, data types defined in
advance and there are also limits in speed of reading the data
[1], [2]. The solution we have applied in this case is based on
creating a separate cluster of objects inside the application
itself, which enables us the flexibility in terms of number and
types of data. The base of this approach is the use of so called

1Dejan S. Aleksić is with the Faculty of Sciences and
Mathematics, University of Nis, Visegradska 3, 18000 Nis, Serbia,
e-mail: dejan_aleksic@yahoo.com.

2Dragan S. Janković is with the Faculty of Electronics, University
of Nis, Aleksandra Medvedeva 14, 18000 Nis, Serbia,

e-mail: dragan.jankovic@elfak.ni.ac.yu.

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

259

 attributes i.e. the base class tAttribute along with its
subsequent class clusters. Each entity is described with a
random number of attributes and each attribute has its type,
current value from the list of possible values [3], [4]. This
approach brought a number of benefits regarding ease of
execution of small, but also large enough differences in
profile system description, Multilanguage terms support
within the database, ease of upgrading the existing database
version, automatic data copy from the database into the
memory or disk structures and vice versa, quick and easy
writing and reading of data about projects on/from the disk,
possibility of execution of automatic written project data
upgrade in accordance with data changes in value, as well as
in number and type, accomplishment of all advantages which
object-oriented data access brings (data abstraction,
inheritance, overload of attributes) over data located inside
the database, memory or on disk.

All the actions concerning writing, editing and reading
attributes inside the database are executed inside tAttribues
class [5].

IV. HIERARCHY SYSTEM DESCRIPTION

It has already been mentioned that each profile system,
besides its elements, is defined by the rules of combining
those elements. All general rules of combining are executed in
the main application code while the other, specific rules of
combining are executed within the database itself. In order to
model the profile system rules as efficiently as possible, all
the system elements data is organized in a hierarchal tree in
multiple fixed levels (see Fig. 1.).

Fig. 1. Schematic display of hierarchal system description

The exception are elements of the lowest hierarchy level
which can have their “children” i.e. elements that are added
when adding parent-element itself. Process of adding
“children”-elements is done by executing scripts which are
allocated to each “child”-element and/or using conditional
“child” adding system (see Fig. 2.).

V. DEFINING THE RULES OF COMBINING

Main mechanism of accomplishing specific rules of
combining is comprised of executing scripts affiliated to

Fig. 2. Parent – child relation

elements on the lowest hierarchy level of profile system
within the database. As mentioned before, one parent-element
can have unlimited number of child-elements which are
conditionally added after the parent-element is added first.

Process of adding one parent-element begins with forming
an instance of tItem class inside the memory along with the
list of attributes written in the tAttributeList class. After that,
the list of children of that element is ran through and for each
child-element a process of adding a child is executed. The
whole process is done inside the script-executing module
which takes an appropriate script from the database and
acquires its input parameters (see Fig. 3.).

Fig. 3. Generating a new child-element by executing a script

Typically, script input parameters are two lists of attributes.
The first one is a list of parents, and the second is a child-
element attribute list. Inside the module, script commands are
executed in order to get a list of attributes which are allocated
to the newly formed instance of the tItem class for the child-
element as a result (see Fig. 3.).

The script language (see Fig. 4.) alone has the following
features: it follows the Pascal programming language syntax,
there is a list of input and output parameters, beside basic
types, types defined within the main application can be used
(tItem, tAttribute, tAttributeList), possibility of defining local
variables, possibility of defining local procedures and
functions, access and editing child and parent attributes,
access to data structures from the main application during

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

260

 script execution, syntax script analysis during defining and the
possibility of compiling scripts before writing to the database.
script =
 script-heading block “.”
script =
 script ident. “(“ ident.-list “)” “,”
block =
 declaration-part statement-part
declaration-part =
[type-definition-part]
[variable-declaration-part]
proc-and-funct-declaration

proc-and-funct-declaration =
 {(proc-declarat|funct-declarat)";"}
proc-declarat =
 procedure-heading ";" body |
 procedure-heading ";" directive |
 procedure-identification ";" body
funct-declarat =
 function-heading ";" body |
 function-heading ";" directive |
 function-identification ";" body
procedure-heading =
 procedure ident.[formal-parameter-list]
function-heading =
 function ident.[formal-parameter-list]
":" result-type
statement-part =
 begin statement-sequence end
statement-sequence =
 statement { ";" statement }
assignment-statement =
 (variable|function-ident)":="expression
procedure-statement =
 procedure-ident.[actual-parameter-list]
while-statement =
 while expression do statement
repeat-statement =
 repeat statement-seq. until expression
for-statement =
 for variable-ident. ":=" initial-
expression (to | downto) final-
expression do statement
if-statement =
 if expression then statement [else
statement]

Fig. 4. Part of EBNF definition the script language

VI. CONDITIONAL ELEMENT ADDING

Conditional element adding represents yet another
execution mechanism of specific combining rules. Its function
represents the expansion of previously described child-
element adding mechanism by executing scripts. Namely, one
parent-element can contain the list of pairs criteria=values.
Each criterion must be registered and corresponds to a certain
attribute from the parent-element attribute list. List of criteria
contains the list of child-elements with their scripts. When
adding a parent-element a special module from the main

application is activated which, based on parent-elements
attribute values and the values of criteria from the lists,
decides if and which list of children will be passed over to the
script executing module (see Fig. 5.).

Fig. 5. Parent – child relation

Using this mechanism we emulate the complex if-then
command within the very database. Its use could have been
accomplished using special conditional commands within the
scripts of each child-element as well, but the one we chose is
much more efficient and clear especially concerning adding of
child-elements.

VII. ONE EXAPMLE

Mechanisms described in previous section are illustrated in
this section. We will used PVC profile system in this example.
PVC profile is not strong enough and needs to insert Fe
profiles inside PVC profile.

Fig. 6. One PVC profile and Fe armature profile

In one PVC profile can be inserted different Fe profiles
depending of length of PVC profile, intensity of wind in this
area, atc. Typically, angle of cutting Fe profile is 90° - 90°
and his length must be less then length of parent PVC profiles
(see Fig. 6).

Assumed that one instance of tItem class and his
appropriate attribute list was made for PVC profile with
catalogue name 309.07. Values of some typical attribute for
this profile was show on Fig. 8 (left side).

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

261

Fig. 7. PCV profile 309.07 (parent) with his "children"

In next step, conditional element adding mechanism is
activated and some element - children of PVC profile will be
adding.

CatName = "309.07"
Width = 88.0
Len = 1206.00
U1 = 135.00
U2 = 45.00
Qty = 4
FeType = "S3702"
FeCut = 5.0
minFeLen = 600
 . . .

CatName = " S3702"
Len = 0.00
U1 = 0.00
U2 = 0.00
Qty = 0
 . . .

Fig. 8. Attribute value of PVC profile (left) and Fe profile (right)

In this case, three diferrent Fe profile (S3702, 634 and
S33701) can be added depending of value of FeType attribute
in attribute list of PVC profile 309.07 (see Fig. 7.). S3702 Fe
profile was selected and his attribute list will be loading from
hierarchal system description data structure with default
attribute value (see Fig. 1.).

script AddFe (p:tItem; var c : tItem)
begin
 c.Len := p.Len–(p.w+p.FeCut)*2;
 c.U1 := 90.00;
 c.U2 := 90.00;

 if p.Len > p.minFeLen
 then c.Qty := p.Qty
 else c.Qty := 0
end.

Fig. 9. Script for Fe profile adding

After that, appropriate script will be assign to S3702 Fe
profile (see Fig. 7.). Attribute list of PVC profile 309.07 (as
parent), attribute list of Fe profile S3702 (as child) and
appropriate script will be sent to script-execution module (see
Fig. 3.). Value of some children attributes will be changed
during script executions and lenght and cutting angle of Fe
profile will be define. In most of PVC profile systems govern
follow rule: if lenght of PVC profile is less then some critical
value appropriate Fe profile not need to add. This rule is
modeling with if-then-else command on the end of script (see
Fig. 9.). On the end of this process, instance of tItem class

CatName = "S3702"
Len = 1020.00
U1 = 90.00
U2 = 90.00
Qty = 4
 . . .

Fig. 10. Final value of typical attribute of new Fe profile S3702

who represents S33702 Fe profile will be create if value of
attribute c.qty is great then 0. Final value of typical attribute
of new Fe profile S3702 is shown on Fig. 10.

VIII. CONCLUSION

Definition and the execution of combining profiles in
profile systems represent one of the key problems in a specific
CAD/CAM application for design and manufacture of facade
carpentry support. General rules which are common for all the
systems are executed within the application, and all the
specifics that certain systems possess are executed within the
database. When describing new profile system only
information in the database is altered while the main
application remains the same for all systems, which brings us
to one application – multiple base principle. Information on
system elements has hierarchal organization in multiple
levels, where lowest level elements can have “children”.
Process of child-element adding is accomplished by executing
scripts allocated to each child-element and/or with the
conditional child adding system. The script language is
specially created for this use, follows the Pascal programming
language syntax, acquires the list of input and output
parameters; beside basic types, types defined within the main
application can be used. There is a possibility of defining local
variables, procedures and functions, access to and editing of
parent/child attributes as well as access to data structures from
the main application during the script execution. Before
writing the script into the database, a syntax script analysis is
performed and there is a possibility of compiling scripts which
significantly increases their execution.

All these concepts enable us to relatively easy and within a
short period of time model the rules of combining of some
new system with all the specifics it carries with it.

REFERENCES

[1] Q. Zhang, "Object-oriented database systems in manufacturing:
selection and applications", Industrial Management & Data
Systems, vol. 101, no. 3, pp. 97-105, 2001.

[2] D. Maier, "Making database systems fast enough for CAD
applications", Object-oriented concepts, databases, and
applications, ACM Press, New York, NY, 1989.

[3] M. Blaha, W. Premerlani, H. Shen, "Converting OO Models
Into RDBMS Schema", IEEE Software, vol. 11, no. 3, pp. 28-
39, May/June 1994.

[4] Y. Yang, "An enhanced data model for CAD/CAM database
systems", Proceedings of the 25th ACM/IEEE conference on
Design automation, pp. 263 - 268, 1988.
P. Buneman, M. Atkinson, "Inheritance and persistence in
database programming languages", Proceedings of the 1986
ACM SIGMOD international conference on Management of
data, Pages: 4 – 15, 1986.

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

262

