
 Implementing Complex Polylines for use in GIS
Marko Kovačević1, Aleksandar Milosavljević2, Dejan Rančić3

Abstract – This paper presents an approach for implementing
visual portrayal of geographic features with polyline geometry
(complex polylines) for appliance in GIS based applications. This
approach relies on developed XML styling language for defining
styling rules (decorations) of complex polylines. The structure of
developed XML language was the foundation for designing the
appropriate class library able to interpret XML definition of
decorations and draw the desired complex polylines.

Keywords – Polylines, Style, GIS, XML, GDI+.

I. INTRODUCTION

A geographic information system (GIS) is special type of
computer-based information system tailored to store, process,
and manipulate geospatial data [1]. The ability of GIS to
handle and process both location and attribute data
distinguishes GIS from other information systems. It also
establishes GIS as a technology important for a wide variety
of applications [2].

The fundamental information unit that GIS deals with is
called a geographic feature. Geographic feature is an
abstraction of a real world phenomenon associated with a
location relative to the Earth [3]. Every feature may have a
number of properties. One or more of the feature's properties
may be geometric. Geometry provides the means for
quantitative description of the spatial characteristics of
features, including dimension, position, size, shape, and
orientation. A geometric object is a combination of a
coordinate geometry and a coordinate reference system. In
general, a geometric object is a set of geometric points,
represented by their coordinates. Basic geometric objects are
points, polylines, and polygons [4].

The importance of the visual portrayal of geographic data in
GIS cannot be overemphasized. The skill that goes into
portraying data is what transforms raw information into an
explanatory or decision-support tool. Fine-grained control of
the graphical representation of geographic features is a
fundamental requirement for any professional mapping
community. Allowing user to define styling rules for visual
portrayal of geographic features requires the existence of a
styling language that the user and GIS application can both
understand [5].

In this paper we present an approach for implementation of

visual portrayal of geographic features with polyline
geometry (further referred to as complex polylines). We
developed XML styling language that enables simple and
flexible way to define styling rules (further referred to as
decorations) of complex polylines. The structure of developed
XML language was the foundation for design and
implementation of the appropriate class library aimed to
interpret XML definition of decorations and draw the desired
complex polylines.

Decorations include all graphic and text elements of a
complex polyline. In this paper we focus on implementation
of the following decorations:
 Start cap – graphic symbol at the start of the polyline.
 End cap – graphic symbol at the end of the polyline.
 Pattern – element set (includes graphic symbols, lines of

different types (e.g. 2 pixels solid green line), empty
spaces and text elements) that repeats itself along the
polyline.

 Label – pattern like element set placed at defined
positions on the polyline.

The paper is organized as follows: Section 2 presents XML
language for defining decorations of complex polylines.
Section 3 discusses the architecture and implementation issues
of developed class library. Section 4 summarizes the achieved
results.

II. XML DEFINITION OF COMPLEX POLYLINES

XML language for defining decorations of complex
polylines is specified using XML Schema Definition
Language. A valid XML document contains a definition of
decorations for a specific complex polyline, which can be
interpreted using developed class library. Similar approach,
based on defining styling language using XML Schema, is
used by Open Geospatial Consortium in developing The
Styled Layer Descriptor (SLD) Profile of the WMS [5].

Top level element that is used for specifying decorations is
based on XML complex type named ComplexLineType (see
Fig. 2). Bellow we briefly describe all containing elements of
this XML type.

Fig. 2 - Structure of XML definition of complex polyline

Fig. 3 shows the structure of element Symbols. This element

contains the description of every graphic symbol that is going
to be used in decorations of the complex polyline. Contained
element SymbolLineWidth is used to optionally setup the width

1Marko Kovačević is with the Faculty of Electronic Engineering,
Aleksandra Medvedeva 14, 18000 Niš, Serbia, E-mail:
markko.marce@gmail.com

2Aleksandar Milosavljević is with the Faculty of Electronic
Engineering, Aleksandra Medvedeva 14, 18000 Niš, Serbia, E-mail:
alexm@elfak.ni.ac.yu

3Dejan Rančić is with the Faculty of Electronic Engineering,
Aleksandra Medvedeva 14, 18000 Niš, Serbia, E-mail:
ranca@elfak.ni.ac.yu

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

285

 of the line used for drawing graphic symbols. There is also an
array of elements Symbol. Element Symbol has two attributes:
id and src. Attribute id is a unique identificator of the graphic
symbol, used for referencing in other elements. Attribute src is
the path to the SVG file that contains the shape description of
the graphic symbol. Contained elements of the element Symbol
are used to optionally setup the appearance of graphic symbol:
its line and interior color (LineColor and FillColor, respectively),
width of the symbol (Width) and displacement from the
polyline segment (Offset).

Fig. 3 - Structure of an XML definition of graphic symbols in

complex polyline

Elements StartCap and EndCap are used to define graphic

symbol at the start and at the end of the polyline, respectively.
They only contain one attribute, idRef, a reference to the
appropriate graphic symbol.

Fig. 4 shows the structure of an element Pattern, that is
based on XML complex type patternType.

Fig. 4 – Structure of an XML definition of a pattern of complex

polyline

Element Pattern is used to define a pattern of the complex

polyline. Pattern is a set of graphic and text elements that
repeats itself along the polyline. For creating the pattern, four
contained elements can be used: Symbol, Text, Blank and Line.

Symbol defines graphic symbol, referenced by the attribute
idRef. Text defines text in pattern. Its attribute readOrientation is
used to setup how the text will be oriented – in the direction of
the polyline or in the way so it can be easily readable. First
contained element Format holds the text. The rest of the
contained elements of the element Text are used to optionally
setup the appearance of text element: its line and shadow
color (InteriorColor and BorderColor, respectively), font (Font)
and displacement from the polyline segment (Offset). Blank
defines the length (via element Length) of an empty spacing in
pattern. Line defines length (via element Length) and properties
(via element Simple) of the line in pattern.

Fig. 5 shows the structure of element Labels, which is used
to define labels of the polyline. There are six types of labels,
which correspond to the contained elements of element Labels.
PreStaringLabel and PostEndingLabel define label before the
start and label after the end of polyline, respectively.
StaringLabel and EndingLabel define label at the start and label
at the end of polyline, respectively. EverySegmentLabel defines
label which will be in the middle of every segment of
polyline. The array of elements PositionLabels defines labels at
the specified positions on polyline.

Fig. 5 – Structure of an XML definition of types of labels of

complex polyline

All of these elements are based on XML complex type

labelType, shown in fig. 6. Each label can consist of maximum
5 rows, which are defined by contained elements RowAbove2,
RowAbove1, Row0, RowBellow1 and RowBellow2. These
elements are based on previously explained XML complex
type patternType. The rest of the contained elements define the
position of label (Positions and Segment), alignment of label
(Alignment), orientation of label (ReadOrientation) and
minimum distance between labels of the same type
(MinimumDistance).

Fig. 6 – Structure of an XML definition of labels of complex polyline

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

286

Fig. 7 – Logical model of class library for complex polylines

III. CLASS LIBRARY FOR COMPLEX POLYLINES

XML definition of decorations for complex polylines was
the foundation for design and implementation of the class
library aimed to interpret XML definition of decorations and
draw the desired complex polylines. Similar approach, where
XML definition and logical model of class library are closely
related, is described in [6].

Fig. 7 shows UML logical model of the developed class
library. The main tasks that this class library must perform are
following:
 Reading data from a valid XML document and creating

required objects.
 Calculating size, position and rotation of complex

polyline decorations for submitted endpoints.
 Drawing complex polyline using GDI+ [7].
The class library for complex polylines is implemented in

Visual C++. The main class is GLineComplex, which
corresponds to XML complex type ComplexLineType. Attribute
members of this class correspond to the contained elements of
XML complex type ComplexLineType (Fig. 2). These members
are set by calling the method Create that reads and interprets
XML document with complex polyline definition. Method
Draw does all necessary calculations and then draws complex
polyline, which endpoints are passed to this method as one of
the parameters.

Class GSymbol corresponds to the definition of XML
element Symbol (Fig. 3). The graphic shape of each symbol is
defined in appropriate SVG file [8]. Path to the SVG file is
contained in the attribute member m_sSrc, which corresponds
to XML attribute src of XML element Symbol. An attribute

member m_Path contains GDI+ GraphicsPath object, obtained
by calling the method Create of the class SVG. This method
creates GDI+ GraphicsPath object from the submitted SVG
file [7].

Abstract class GPatternElement, is a base class for four
classes: GPatternSymbol, GPatternText, GPatternBlank and
GPatternLine, which correspond to XML elements Symbol,
Text, Blank and Line, respectively (Fig. 4). Class GLabels
corresponds to XML complex type labelType (Fig. 5).

The main method of class GLineComplex is Draw method.
Endpoints of polyline are passed to this method as one of its
parameters. This method performs three essential tasks:
 Calculating drawing parameters (size, position and

rotation) for defined decorations of complex polyline.
 Accepting decorations that satisfy certain conditions.
 Drawing complex polyline (with accepted decorations),

using GDI+.
Fig. 8 shows pseudo code of Draw method. As it can be

noticed, pattern of the polyline is drawn first. Drawing
parameters for other decorations are calculated prior to
drawing the pattern, but these decorations are drawn after
drawing a pattern. In this way, pattern is drawn only where is
visible (not where it is covered by other decorations), which in
most cases gives better visual representation of polyline
pattern.

Implemented approach also tackles the frequent problem of
empty spaces in complex polylines. If the space left for
drawing one of pattern’s elements is slightly smaller than
needed, it is better to draw this element than to leave this
space empty. An implemented approach allows this element to
be drawn without overlapping other, more important,
decorations.

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

287

Fig. 8 – Pseudo code for Draw method

We applied the class library presented in this paper to the

GIS based application for graphical representation of military
situation maps (see Fig. 9). All polylines (including polygons)
shown in Fig. 10 are essentially complex polylines, drawn
using the developed class library. Defining new types of
polylines and modifying decorations of drawn polylines and
polygons can easily be achieved due to the developed XML
language. Part of the XML document that defines position and
appearance of label “XX”, of the polyline used to draw
polygon in the top right corner of Fig. 9, is shown in Fig. 10.

Fig. 9 – Using complex polylines for military situation maps

Fig. 10 –Defining label of complex polyline via XML

IV. CONCLUSION

Great importance of the visual portrayal of geographic
features in GIS is undisputable. Implementing user-defined
visual portrayal of geographic features requires the existence
of a styling language that the user and GIS application can
both understand.

In this paper we presented an approach for implementing
visual portrayal of geographic features with polyline geometry
(complex polylines). We developed XML styling language
that enables simple and flexible way to define styling rules
(decorations) of complex polylines. The structure of the this
XML language was the foundation for designing the class
library able to interpret XML definition of decorations and
draw the desired complex polylines using GDI+.

In this paper we discussed implementation of the following
decorations:
 Start cap – graphic symbol at the start of the polyline.
 End cap – graphic symbol at the end of the polyline.
 Pattern – element set repeated along the polyline.
 Label – element set located in defined locations on the

polyline.
Element set specified for pattern and labels can contain one

or more of the following elements:
 Graphic symbol (which shape is loaded from SVG file).
 Text with the specified properties.
 Line with the specified properties and length.
 Empty space with the specified length.
The core of the developed class library is an algorithm that

calculates drawing parameters for specified decorations,
eliminates some of the decorations in order to make the
display distinctive and readable, and draws complex polylines.

REFERENCES

[1] Worboys, M., and Duckham, M., GIS: A Computing
Perspective, Second Edition, CRC Press, Boca Raton, FL, 2004.

[2] Chang, K., Introduction to Geographic Information Systems,
Third Edition, McGraw-Hill, New York, NY, 2005.

[3] The OpenGIS Abstract Specification, Topic 5: Features
(Version 5.0), document 08-126, Open Geospatial Consortium
Inc., January 2009, http://www.opengeospatial.org/standards/as

[4] OGC Reference Model (Version 2.0), document 08-062r4, Open
Geospatial Consortium Inc., November 2008,
http://www.opengeospatial.org/standards/orm

[5] Styled Layer Descriptor profile of the Web Map Service
Implementation Specification (Version 1.1.0), document 05-
078r4, Open Geospatial Consortium Inc., June 2007,
http://www.opengeospatial.org/standards/sld

[6] Milosavljević, A., Đorđević-Kajan, S., Stoimenov, L., An
Application Framework for Rapid Development of Web based
GIS: GinisWeb, Chapter 3 in Geospatial Services and
Applications for the Internet (eds. J. T. Sample, K. Shaw, S. Tu,
M. Abdelguerfi), Springer, 2008, pp. 49-72, ISBN: 978-0-387-
74673-9.

[7] Microsoft Windows GDI+, Microsoft Corporation,
http://msdn.microsoft.com/en-us/library/ms533798(VS.85).aspx

[8] Scalable Vector Graphics (SVG) 1.1 Specification, World Wide
Web Consortium, January 2003, http://www.w3.org/TR/SVG11

<PositionLabels>
<Row0>
 <Text>

 <Format>XX</Format>
 <BorderColor>#FFFFFF</BorderColor>
 <InteriorColor>#000000</InteriorColor>

 </Text>
</Row0>
<Alignment>Center</Alignment>
<Segment>South</Segment>
<ReadOrientation>true</ReadOrientation>

</PositionLabels>

Set of decorations SI = {start cap, end cap, labels}.
Set of accepted decorations SA = {}.

foreach decoration D in SI
begin

if (D exists)
begin

Calculate drawing parameters (params) of D.

if ((Calculated polyline segment is big enough for D to be drawn on it) and
(D can be drawn without overlapping with decorations from SA) and
(if D is a label, minimum distance condition is satisfied))
begin

Put D in SA and memorize previously calculated drawing params of D.
end if

end if
end foreach

Calculate and draw pattern on parts of the complex polyline not reserved for
decorations from SA.
Draw decorations from SA, using previously calculated and memorized params.

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

288

