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Abstract - The cell functions and development are regulated by 
complex networks of genes, proteins and other components by 
means of their mutual interactions. These networks are called 
gene regulatory networks (GRNs). The gene regulatory networks 
are used to reveal the fundamental gene regulatory mechanisms, 
to determine the reasons for many diseases and interactions 
between drugs and their targets, to produce a clear and 
comprehensible notion for cell regulation,. The introduction of 
experimental technologies such as microarrays and chromatin 
immunoprecipitation ChIP-chip, has provided a large number of 
available datasets related to gene expression and transcription 
factors (TFs). These datasets are basis for further analysis to 
reveal the gene regulation mechanisms. We implemented and 
visualized the dynamic Bayesian network which is able to cope 
with missing data and can include a prior knowledge about 
transcription factors. Also, we describe the obtained results and 
survey the common structure learning algorithms for learning of 
GRN’s structure. 
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I. INTRODUCTION 
 

The living cells during their life span carry out many 
different tasks controlled by the cell genome which is encoded 
in the DeoxyriboNucleic Acid (DNA) molecule. The genes 
are transcribed into messenger RiboNucleic Acid (mRNA), 
and then translated in proteins. 

The necessity to generate, analyze and integrate the large 
scale expression data led to the development of microarray 
technology [2]. Genes and their products – proteins work 
coordinately in complex networks. The cell functions and 
development are regulated by complex networks of genes, 
proteins and other components by means of their mutual 
interactions. These networks are called gene regulatory 
networks (GRNs). The proteins which activate or inhibit the 
transcription of the other genes are called transcription factors 
(TFs). Transcription factors are important components in gene 
regulatory networks. The GRNs are commonly used to study 
influences between cell components because they provide a 
clear and understandable notion for cell regulation as well as 
reveal the fundamental gene regulatory mechanisms and find 
out the reasons for many diseases. 
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Many destructive diseases such as cancer are related to 
different genetic disorders. Modeling of the GRNs represents 
one of the most powerful techniques to describe the 
fundamental cellular mechanisms and associated intracellular 
and intercellular processes. The goal of many researches 
which include the experimental and simulating methods is by 
studying the GRNs to reveal therapeutic and prognostic 
relevant knowledge about many diseases. 

Besides microarray technology, the introduction of other 
experimental technologies such as chromatin 
immunoprecipitation ChIP-chip, provides a lot of available 
datasets related to gene expression and transcription factors. 
ChIP-chip provides an insight into interaction between 
transcription factors and promoter region of the gene when it 
is combined with microarray analysis [5]. These data types are 
basis for further analysis and they are means of revealing the 
gene regulation mechanisms and essential knowledge about 
cell processes on genomic and molecular level. 

To represent GRNs, more models are used, such as state 
space model, Bayesian networks, dynamic Bayesian networks, 
Boolean networks, linear and nonlinear differential and 
difference equations model, fuzzy logic model, information 
theory model, and others models. 

Finding out the most reliable and accurate structure of 
GRNs from high dimensional microarray data is a machine 
learning problem known as structure learning of graphical 
models. A subset of the data is used for model fitting and the 
residual data for the model validation [3]. Cross-validation 
methods are very useful for validation and training of 
regulatory networks. But, the obtained networks which fit the 
best to the training set are overtrained [4]. Such overfitted 
networks lose their ability to generalize the suitable networks 
for the data outer the training set. 

The remainder of this paper is organized as follows. In the 
second section we present the models based on Bayesian 
networks and their advantages and disadvantages. The 
consequent section describes the dynamic Bayesian networks. 
A survey of structure learning algorithms of reconstructed 
gene regulatory networks is given in the Section 4. The 
following section is devoted to the reconstructed GRN using 
Bayes Net Toolbox (BNT). The concluding remarks are given 
in the last section. 
  

II. BAYESIAN NETWORKS 
 

 The Bayesian networks are a special case of graph models 
consisted of two components and based on statistical 
principles [6]. The first part is a directed acyclic graph 
G=(V,E) where  nV ,,1  is a set of nodes and E is a set of 
edges. Each node Vi refers to random variable xxi   that 
represents the gene expression - in the case of GRNs. The set 
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 of edges corresponds to the conditional dependence among 
nodes. The second part of network is a set of conditional 
probability distributions that describe the conditional 
probability of each variable (the gene expression). 

If  nxxx ,,1   denotes a set of random variables, G - 
structure of graph,  - set of parameters the joint probability 
distribution is given by Eq. 1. 
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If the pai denotes the parent nodes of the node xi that means 
the state of each variable xi depends on the states of its parent 
pai (Eq. 2):  
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Bayesian networks are suitable to show regulatory 
mechanisms between network components quantitatively as 
well as qualitatively. The qualitative description of regulatory 
mechanisms refers to presence/absence of an edge between 
network nodes whereas quantitative representation is made by 
a set of conditional probability distributions. 

The modeling of the gene regulatory networks is made by 
structural and parameter learning. The goal of structural 
learning is to determine topology of network. For a given 
network structure, the parameter learning includes parameter 
estimation of unknown model for each gene. This is 
performed by determination of conditional dependencies 
between network components. 

Bayesian networks can deal with noisy and stochastic 
nature of gene expression data and with incomplete 
knowledge about system. The small number of data points 
(samples) and the big number of genes are common problems 
for learning Bayesian networks. Another disadvantage is that 
this model cannot model feedback connections, which exist in 
the gene regulatory networks. 
  

III. DYNAMIC BAYESIAN NETWORKS 
 

To overcome the problems of Bayesian networks, dynamic 
Bayesian networks are used to model gene regulations. The 
dynamic Bayesian networks are capable to deal with 
stochastic variables, time series gene expression data, to 
include prior knowledge, feedback loops and to handle 
missing values and hidden variables. The hidden nodes 
(variables) can capture effects that cannot be directly 
measured in a microarray experiment. 

The joint probability distribution is given by Eq. 3, where 
i
tx  is the i-th node at time t. 
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 Dynamic Bayesian networks can apply and learn for real 
biological data, and there is a relationship to Hidden Markov 
Model, Boolean networks, stochastic Boolean networks, 
dynamic Bayesian networks with continuous state and other 
probabilistic models. The hidden nodes provide a way of 
linking similar data types and analysis of other network 

parameters. When some dependency exists between variables 
in the network, the hidden node can model that dependency.  
 Relatively low prediction accuracy and excessive 
computational time are two problems which reduce the 
performance of the dynamic Bayesian network model. To 
overcome these problems it is suggested a dynamic Bayesian 
network approach which limits the potential regulators to 
those genes with either earlier or simultaneous expression 
changes (up- or down-regulation) in regard to their target 
genes. Then, the genes with either earlier or simultaneous 
expression changes are assigned as possible regulators of 
those genes with a later expression change. 
  

IV. STRUCTURE LEARNING 
 
 To choose the most appropriate network for a given 
dataset it is necessary to carry out a validation of the modeled 
networks. The precision and the reliability of models 
predictions are commonly examined in respect with input 
experimental data during the process of model validation. 
Structure learning of Bayesian network consists of finding a 
directed acyclic graph (DAG) that best fits the dataset. The 
structure learning performs by means of scoring function that 
evaluates how well the DAG explains the data and then to 
search for the best DAG that optimized the scoring function. 
There are two approaches for structure learning: constraint-
based and search-based approach. In the constraint-based 
approach, the algorithm starts with a fully connected graph 
and removes edges. 

The number of directed acyclic graphs as a function of the 
number of nodes G(n) is super-exponential dependent (Eq. 
4) 
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 After modeling of GRNs, the model which provides a 
good fit to the data should be selected. The criteria such as 
Bayesian score [8], maximal likelihood, Bayesian information 
criterion, minimum description length are used for model 
validation of gene regulatory networks. Model is validated by 
the n-cross validation too, where the input set is divided to n 
parts. The n-1 parts are used as a training set, and the 
remaining as a test set. 
 Let M denotes the structure of a dynamic Bayesian 
network, D is the data set, P(M) is the prior probability of the 
network structure and P(D|M) is its marginal likelihood.  is a 
parameter vector of the conditional probability distributions. 
The marginal likelihood is an average of the likelihood 

),|( MDP  over all possible parameters associated to the 
network. The Bayesian score is based on the marginal 
likelihood of the data is defined as follows: 

 dMPMDPMDP )|(),|()|(                      (5) 

and provides a matching between model complexity and the 
data size. 
 The goal of the Minimum Descriptive Length criterion 
(MDL) is to provide an optimal matching between the 
precision of the data fitting and the complexity of network 
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Figure 1. Insulin gene regulatory network with 35 genes. 
 
 
model. The MDL score consists of model and data set 
encoding, hence the MDL criterion L is a sum of the network 
coding length LM and data set coding lengths given by the 
following equation: 
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where )( 1 jj xxH  is the state transition conditional entropy, 

)( 1 jj xxp  is the transitional probability and m – number of 
sample points [9]. 
 At the Bayesian Information Criterion (BIC)  n denotes the 
sample size, k – numbers of parameters and RSS is the 
residual sum of squares from estimated model. If it is assumed 
that the distribution of the models errors is normal, then the 
aim is to minimize BIC, given by Eq. 7.  
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 The Maximum Likelihood (ML) criterion expresses the 
likelihood L() as a function of the unknown vector parameter 
  and aims to find the parameters of all possible values which 
maximizes L(). The solution can be a function of one or 
many parameters and often this problem is nonlinear 
optimization problem. 
 To obtain a good balance between the accuracy of data 
fitting and the complexity of gene network models, some of 

above mentioned criteria are applied. Their application infers 
GRNs with significant biological performances of inferred 
interactions between networks elements. 
 Because of super-exponential dependency between 
number of directed acyclic graphs and number of nodes, the 
local or global search algorithms are used (K2, Hill-climbing, 
MCMC, Structured EM). 
 In addition to the search procedure, the scoring function 
should be specified. 
 The K2 algorithm is a greedy search algorithm that works 
as follows. In the beginning each node has no parents, it then 
adds incrementally that parent whose addition most increase 
the score of the resulting structure. When the adding of no 
single parent can increase the score, the adding parents to the 
node stops. It attempts to select the network structure that 
maximizes the posterior probability of network given the 
experimental data [1]. 
 Hill-climbing starts at a specific point in space, considers 
all nearest neighbors, and moves to the neighbor that has the 
highest score. If no neighbors have higher score than the 
current point (a local maximum is reached), the algorithm 
stops.  
 To evaluate the obtained results, the inferred network 
structure should be compared with the reference network. The 
Receiver Operator Characteristics (ROC) curves are used to 
evaluate inferred network structure quantitatively [7]. The 
ROC curve is a chart of the ratio between sensitivity and 
(1-specificity), where sensitivity corresponds to proportion of 
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 actual positives edges which are correctly identified and 
specificity is proportion of negatives edges which are 
correctly identified. The ROC curves can be summarized by 
computing the AUC (Area Under the ROC Curve).  
 

V. RESULTS 
 

 To implement dynamic Bayesian gene regulatory network 
we use insulin gene expression data, Bayes Net Toolbox [10] 
and Bayesian Network Structure Learning – software package 
[11]. The obtained gene regulatory network is shown on Fig. 
1. From insulin data, we specified the interaction between 
genes (we take 35 genes) which is in regard to interactions 
transcription factors - target genes. 
 

VI. CONCLUSION 
 

Besides the amount of microarray data sets, the 
reconstructing of gene regulatory networks is still a hard and 
challenging problem. Bayesian networks especially dynamic 
BNs are powerful tools which provides elucidation of 
interaction among genes. The main shortcoming of utilized 
Bayes Net Toolbox and Bayesian Network Structure Learning 
is their limitation to cope with networks with small number of 
nodes, especially for structure learning. For large gene 
networks with hundreds and thousands of genes, these tools 
are not advisible. 

Future tools should be able to deal with large gene 
networks. 
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