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Abstract – In this paper we focused on three ASA tools for 
C/C++ programs. After short ASA tools description, we examine 
the faults identified by ASA tools, manual inspections and system 
failure testing. Additionally we categorize raw output from ASA 
tools that help us to make conclusions about the efficiency of 
static analysis for software fault detection in students’ projects. 
We analyze 700 student diploma projects during the last 13 
years. 
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I. INTRODUCTION 

One of the possible fault-detection techniques is static 
analysis. This analysis concerned evaluating a system and its 
components based on a code, forms, data structures, 
documentation without program execution. Inspections are an 
example of static analysis that relies on code rewires. The 
other possibility is using of automated tools for that purpose. 
These tools help us to reduce code errors such as runtime 
exception, redundant code, inappropriate use of variables, 
division by zero and potential memory leaks. We defined the 
use of automated static analysis (ASA) tools and Inspections 
that mean manual code review. ASA may help software 
engineers to fix faults in software test process. In this paper 
we report the result of using static analysis procedures as a 
fault detection technique in students’ projects. 

The study was a research that analyzed 700 students’ 
diploma projects in Technical University of Sofia, Computer 
System Department. Since 1996 we collect, inspect and 
analyze by ASA tools over 6 million lines of code (LOC). In 
our research we examine software projects written in C/C++ 
that underwent various combinations of inspection and ASA. 
We used Goal-Question-Metric (GQM) to motivate and focus 
our data collection and analysis. 

Structure of the present paper is as followed: automated 
static analysis tools are described in section 2, section 3 
covered data collection, tests and their results are shown in 
section 4, and conclusion is given in section 5. 

II. AUTOMATED STATIC ANALYSIS TOOLS 

ASA can be used as an added fault-detection filter in 

software development process. ASA tools automate the 
identification of certain types of anomalies, as discussed 
above, by scanning and parsing source text of a program to 
look for a fixed set of patterns in the code. ASA utilizes 
control flow and data flow analysis, interface and information 
flow analysis of the source code. There are some errors that 
are never detected by ASA tools [3, 4]. Additionally every 
ASA tool generates different, sometimes no overlapping, 
errors [5]. 

The important benefit of ASA is that they do not require 
code execution for bug tracking. In this case ASA is opposite 
to the language compilers. C language doesn’t have strong 
type checking and the compiler can omit some errors. They 
can be trapped by ASA tools. 

There are range of ASA tools and services deployed for 
C/C++ programs. One of these products is FlexeLint [1]. It 
will check C/C++ source code and find bugs, glitches, 
inconsistencies, non-portable constructs, redundant code, and 
much more. It looks across multiple modules, and so, enjoys a 
perspective your compiler does not have. FlexeLint is a Unix-
based tool and there is also Windows-based version: PC-Lint.  

The other good ASA tool is Reasoning [2]. Its services 
boost the productivity of development teams by uncovering 
security vulnerabilities and reliability defects before they 
become costly problems. This tool finds defects in C/C++ 
applications. Reasoning’s Discovery Mapping Analytics 
Service (DMA) is an analysis of users’ source code using 
static analysis techniques and Reasoning’s expertise in 
identifying Implementation Defects. The tool process users’ 
code through various static analysis engines and analyze the 
results to benchmark the quality level of each component of 
the application. 

The followed metrics are embedded into Reasoning: 
 Metrics for Prioritization – Using Reasoning’s 

Discovery Mapping Analytics service, the engineering 
managers will have the information to recognize and 
prioritize the most problematic application modules 
and direct engineering resources for improved 
effectiveness and more predictable results. 

 Metrics for Risk Management – Reasoning’s 
Discovery Mapping Analytics service maps 
implementation errors that cause system crashes or 
security vulnerabilities. With this mapping, the user 
can significantly enhance risk assessment and 
management capability, with improved prioritization, 
calibration and predictability. Improvements in process 
for discovering defects will improve the ability to 
manage the risk of killer defects getting to customers. 

 Metrics for Code Integrity Benchmarking – 
Reasoning’s Discovery Mapping Analytics service is a 
unique addition to your management dashboard, 
providing quality benchmarks. Reasoning’s DMA 

1Ognian Nakov is with the Faculty of Computer Systems and 
Controls at Technical University of Sofia, 8 Kl. Ohridski Blvd, Sofia 
1000, Bulgaria, E-mail: nakov@tu-sofia.bg.  

2Daniela Gotseva is with the Faculty of Computer Systems and 
Controls at Technical University of Sofia, 8 Kl. Ohridski Blvd, Sofia 
1000, Bulgaria, e-mail: dgoceva@tu-sofia.bg.  

 
 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

455



 service provides an unbiased, third-party assessment of 
code reliability and vulnerability. The DMA results 
show how users’ code characteristics compare to those 
of some of the world’s largest development 
organizations. Once measured, the user can compare: 
results of a quality initiative over the lifecycle steps of 
an application, use of different methodologies, team 
structures, training protocols, etc. 

Reasoning DMA service provides metrics, giving the 
dashboard measurements that let manage quality initiatives 
effectively. Some of the possible error tracking with 
Reasoning are: NULL pointer assignment, out of array access 
bounds, memory leaks, bad deallocation and uninitialized 
variables. 

III. DATA COLLECTION 

We collected and analyzed faults into 700 students’ 
diploma projects during last 13 years. Data analysis consists 
of faults for above 6 million LOC written in C/C++, 
developed by bachelor and master of computer science 
students. In our analysis we discussed three cases: projects 
with inspections, projects with ASA tools testing at first step 
and inspections at second, and projects with inspections first 
and ASA tool testing after that. For our research purpose we 
used different ASA tools, as shown in Table I. In this research 
the number of errors found by FlexeLint is four times than 
errors found by Reasoning. Therefore we based our analysis 
on FlexeLint results. 

We denoted students’ diploma projects as SP and defined 
two product versions: SP1.0 that have only handle 
inspections, SP1.1 that has ASA tool testing and inspections 
too. 

TABLE I 
DATA ANALYSIS 

Project Version ASA Inspections 
SP1.0 Not performed Yes 
SP1.1 FlexeLint, Reasoning Yes 

IV. RESULTS 

In this section we provided the achieve results. We divided 
them into five categories, given in subsections A - D. The 
basic goal is to determine whether ASA tools can help to 
students to improve their programming techniques and to see 
what kind of errors are most frequently occurred in students’ 
projects. Each section started with a base question and short 
explanation of a used metrics to answer to the question in it. 
Using of GQM in each section help us to collect and analyze 
data. All of data analysis, implication of it are posted and 
discussed. 

A. Student’s Diploma Project Quality  

The question that is important in this section is: 

“Will a student’s diploma project be of higher quality if 
ASA tool is using in development process?” 

To answer to this question we used:  
 quantity of defects found by system testing 
 quantity of defects found by our testing 
Divided by churned thousand lines of code (KLOC).The 

results were shown in Table II. Project quality comparison 
based on a number of total failures per churned KLOC 
(KLOCC). In the table we used SP1.0 as a baseline project for 
comparison. We normalized the failures per KLOCC metrics 
relatively to the SP1.0 projects. This gives us relative quality 
of SP projects. 

There is a wide variance in the relative quality of the 
projects. As a result, our analysis didn’t provide conclusive 
results about whether ASA tools will help to increase the SP 
projects quality. 

TABLE II 
RELATIVE SP DIPLOMA PROJECTS QUALITY 

Project Relative Quality 
(failures/ KLOCC) 

Process 
step 1 

Process 
step 2 

SP1.0 1.0 Inspections  
SP1.1 1.32 ASA Inspections 

B. Fault Detection Yield 

The question that we asked in this section is: 
“How effective is ASA at detecting faults compared with 

inspections and testing?” 
To answer to this question we used:  
 quantity of ASA faults 
 quantity of inspection faults 
 quantity of test failures 
Fault detection yield (FDY) refers to the percentage of 

defects, present in the code at the time of fault detecting 
practice [6, 9, 12]. FDY can’t be precisely computed until the 
project is used extensively by the users. This measure 
decreased as more bugs are found. Additionally we calculated 
defect removal efficiency (DRE) [7] as a measure of how well 
bugs are removed. Software defect removal efficiency is 
percentage of total bugs eliminated in the code. High level of 
defect removal efficiency is corresponding to high level of 
user satisfaction. 

TABLE III 
DEFECT REMOVAL YIELD 

Project 
Version 

Phase 
ASA 

ASA (%) Inspe-
ctions 
(%) 

Test 
(%) 

DRE 
(%) 

SP1.0 Not 
performed 

Not 
preformed 

42.31 96.73 98.10 

SP1.1 Prior to 
inspections 

35.00 20.48 98.18 99.05 

 
For SP1.1 ASA performed prior to inspection. No ASA test 

is done for SP1.0. The results are shown in Table III. 
Research indicates that the user can receive high quality 
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 project, if the result is greater than 95% [7, 8, 13, 14]. The 
value of DRE is higher than industrial benchmark and this fact 
indicated high quality of software project. 

These results indicate that defect removal yield of ASA isn’t 
significantly different from that of inspections. The defect 
removal yield of execution-based testing is two times higher 
than that of ASA and therefore may be more effective at 
finding the defects. 

C. Classes of Faults and Failures 

The main questions discussed in this section are: 
“What classes of faults and failures are most often 

detected by ASA, by inspection and by system testing? What 
classes of defects are escaped to the customers?” 

To answer to them we used Orthogonal Defect 
Classification (ODC) [10, 11]. ODC is a scheme to capture 
the semantics of each software defect quickly. It is the 
definition and capture of defect attributes that make 
mathematical analysis and modeling possible. Analysis of 
ODC data provides a valuable diagnostics method for 
evaluating the various phases of the software life cycle 
(design, development, test and service) and the maturity of the 
product. ODC makes it possible to push the understanding and 
use of defects well beyond quality. 

We measured: 
 quantity of ASA faults by ODC type 
 quantity of inspection faults by ODC type 
We counted faults according to ODC type classification. 

Here we will present the results from each metrics. 
ASA Faults 
Each fault was documented with a problem explanation 

and detailed information such as: description, location, 
precondition, impact, severity, suggestion and code fragment. 
Then every fault was manually classified according to ODC 
types. Finally faults were counted and percentages are 
calculated. A summary of the results are shown in Table IV. 
Only FlexeLint is included in comparison.  

TABLE IV 
ASA FAULTS CLASSIFICATION ACCORDING TO ODC TAXONOMIES 

ODC taxonomy SP1.1 (%) 
Assignment 
 All tools 
 FlexeLint including 

 
80 
61 

Checking 
 All tools 
 FlexeLint including 

 
20 
50 

Other ODC taxonomies 0 
 
The result shown in Table IV indicated that ASA tools are 

effective for identifying two ODC types: Assignment and 
Checking. Checking defects are happen in low level design or 
coding phases and Assignments were occurred only in coding 
phase. These problems are due to logical than static analysis. 

Inspection Faults 
All inspection faults are documented in text file. Every 

inspection file was manually created and classified according 

ODC types. The result of this classification is shown in 
TableV. Note that in handle inspection some additional 
properties are documented: readability of code, 
maintainability, naming convention, coding standards and 
programming style. These comments are approximately 25% 
of statements in inspection records. They are not included in 
ODC taxonomies. 

The results show that inspection identifies Algorithm, 
Documentation and Checking faults. Approximately 85% of 
all faults belong to these three categories and the distribution 
is constant regardless of whether or not ASA tests are 
performed. 

TABLE V 
INSPECTION FAULTS CLASSIFICATION 

Defect Type SP1.0 (%) 
No ASA 

SP1.1 (%) 
After 
ASA 

Algorithm 30.40 38.12 
Documentation 29.01 35.13 
Checking 26.62 17.85 
Assignment 6.33 5.02 
Function 1.26 1.74 
Interface 2.21 1.02 
Build/Package/Merge 4.17 1.12 

D. Programming Errors 

The questions discussed in this section are: 
“What kind of programmer errors is most frequently 

identified by ASA? How often does ASA find these errors?” 
To answer to them we used:  
 quantity of ASA faults by defect type 
To avoid differences in defect types among different tools, 

only one ASA is used. We chouse FlexeLint, because it 
identified most defect types from examined ASA tools. Then 
we merged the same and very similar static analysis fault to 
performed result aggregation. All data are ranked with most 
frequently faults at the top of the list. FlexeLint can detect 
more than 800 bugs, but only 33 were found in students’ 
diploma projects. The faults were given one of the following 
severity levels, based on potential failure: 

 Critical – this fault can cause application dump, 
service outage, system reboot; 

 Major – this fault can cause segmentation fault, 
memory leaks, resource leaks, data corruption; 

 Minor – this fault may result in unexpected behavior; 
The results are consistent with the 80-20 rule/Pareto 

Principle, i.e. a great majority of the faults identified by few 
key programmer errors, as shown in Table VI. “Possible use 
of NULL pointer” is most frequently error, identified by ASA 
– approximately 47% of all faults. About 92% of faults are 
focused on 10 fault types. To improve the code quality we 
will used this information in future educations to point the 
students what kind of programmer errors are most often 
happen in their projects. 

There are some additional limitations on this research. 
First ASA tool outputs are screening. Second, assigning of 
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 severity level is a manually operation and is subjective. 

TABLE VI 
PARETO EFFECT IN ASA FAULTS 

 % all 
faults 

% 
critical 
faults 

% 
major 
faults 

% 
minor 
faults 

Top 1 fault: 
Possible use of NULL 
pointer 

45.53 63.12 37.23 39.86 

Top 5 faults: 
Possible use of NULL 
pointer 
Possible access Out-
Of-Bounds 
Pointer not freed or 
returned 
Memory leak 
Variable not initialized 
before using 

72.63 83.43 59.12 73.64 

Top 10 faults: 
Possible use of NULL 
pointer 
Possible access Out-
Of-Bounds 
Pointer not freed or 
returned 
Memory leak 
Variable not initialized 
before using 
Inappropriate 
deallocation 
Suspicious use of ; 
Data overrun 
Type mismatch with 
switch expression 
Control flows into 
case/default 

92.23 89.45 87.31 93.04 

V. CONCLUSION 

To examine the quality of automated static analysis tools, 
we inspect two ASA tools. In this research we gather 
information about ASA tools fault detection, manually 
inspection faults and system testing failures in students’ 
diploma projects. Our analysis provides some results that are 
shown in Section 4. Using the received results we can 
conclude: 

 The defect removal yield of ASA isn’t significantly 
different from that of inspections. The defect removal 
yield of execution-based testing is two times higher 
than that of ASA and therefore may be more effective 

at finding the defects. 
 The ASA tools are effective for identifying two ODC 

types: Assignment and Checking. 
 The inspection identifies Algorithm, Documentation 

and Checking faults. 
 The great majority of the faults identified by few key 

programmer errors. 
 “Possible use of NULL pointer” is most often fault, 

identified by ASA – approximately 47% of all faults. 
 About 92% of faults are focused on 10 fault types. 
 The ASA tools can be used to find security vulnerable 

errors. 
In conclusion results indicate that ASA tools are 

economical complement to other testing techniques. 
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