
 An Approach to Code Analysis in Students’ Diploma
Projects

Ognian Nakov1 and Daniela Gotseva2

Abstract – In this paper we focused on three ASA tools for
C/C++ programs. After short ASA tools description, we examine
the faults identified by ASA tools, manual inspections and system
failure testing. Additionally we categorize raw output from ASA
tools that help us to make conclusions about the efficiency of
static analysis for software fault detection in students’ projects.
We analyze 700 student diploma projects during the last 13
years.

Keywords – Quality code analysis, Bug reviews C/C++
programming, Software engineering.

I. INTRODUCTION

One of the possible fault-detection techniques is static
analysis. This analysis concerned evaluating a system and its
components based on a code, forms, data structures,
documentation without program execution. Inspections are an
example of static analysis that relies on code rewires. The
other possibility is using of automated tools for that purpose.
These tools help us to reduce code errors such as runtime
exception, redundant code, inappropriate use of variables,
division by zero and potential memory leaks. We defined the
use of automated static analysis (ASA) tools and Inspections
that mean manual code review. ASA may help software
engineers to fix faults in software test process. In this paper
we report the result of using static analysis procedures as a
fault detection technique in students’ projects.

The study was a research that analyzed 700 students’
diploma projects in Technical University of Sofia, Computer
System Department. Since 1996 we collect, inspect and
analyze by ASA tools over 6 million lines of code (LOC). In
our research we examine software projects written in C/C++
that underwent various combinations of inspection and ASA.
We used Goal-Question-Metric (GQM) to motivate and focus
our data collection and analysis.

Structure of the present paper is as followed: automated
static analysis tools are described in section 2, section 3
covered data collection, tests and their results are shown in
section 4, and conclusion is given in section 5.

II. AUTOMATED STATIC ANALYSIS TOOLS

ASA can be used as an added fault-detection filter in

software development process. ASA tools automate the
identification of certain types of anomalies, as discussed
above, by scanning and parsing source text of a program to
look for a fixed set of patterns in the code. ASA utilizes
control flow and data flow analysis, interface and information
flow analysis of the source code. There are some errors that
are never detected by ASA tools [3, 4]. Additionally every
ASA tool generates different, sometimes no overlapping,
errors [5].

The important benefit of ASA is that they do not require
code execution for bug tracking. In this case ASA is opposite
to the language compilers. C language doesn’t have strong
type checking and the compiler can omit some errors. They
can be trapped by ASA tools.

There are range of ASA tools and services deployed for
C/C++ programs. One of these products is FlexeLint [1]. It
will check C/C++ source code and find bugs, glitches,
inconsistencies, non-portable constructs, redundant code, and
much more. It looks across multiple modules, and so, enjoys a
perspective your compiler does not have. FlexeLint is a Unix-
based tool and there is also Windows-based version: PC-Lint.

The other good ASA tool is Reasoning [2]. Its services
boost the productivity of development teams by uncovering
security vulnerabilities and reliability defects before they
become costly problems. This tool finds defects in C/C++
applications. Reasoning’s Discovery Mapping Analytics
Service (DMA) is an analysis of users’ source code using
static analysis techniques and Reasoning’s expertise in
identifying Implementation Defects. The tool process users’
code through various static analysis engines and analyze the
results to benchmark the quality level of each component of
the application.

The followed metrics are embedded into Reasoning:
 Metrics for Prioritization – Using Reasoning’s

Discovery Mapping Analytics service, the engineering
managers will have the information to recognize and
prioritize the most problematic application modules
and direct engineering resources for improved
effectiveness and more predictable results.

 Metrics for Risk Management – Reasoning’s
Discovery Mapping Analytics service maps
implementation errors that cause system crashes or
security vulnerabilities. With this mapping, the user
can significantly enhance risk assessment and
management capability, with improved prioritization,
calibration and predictability. Improvements in process
for discovering defects will improve the ability to
manage the risk of killer defects getting to customers.

 Metrics for Code Integrity Benchmarking –
Reasoning’s Discovery Mapping Analytics service is a
unique addition to your management dashboard,
providing quality benchmarks. Reasoning’s DMA

1Ognian Nakov is with the Faculty of Computer Systems and
Controls at Technical University of Sofia, 8 Kl. Ohridski Blvd, Sofia
1000, Bulgaria, E-mail: nakov@tu-sofia.bg.

2Daniela Gotseva is with the Faculty of Computer Systems and
Controls at Technical University of Sofia, 8 Kl. Ohridski Blvd, Sofia
1000, Bulgaria, e-mail: dgoceva@tu-sofia.bg.

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

455

 service provides an unbiased, third-party assessment of
code reliability and vulnerability. The DMA results
show how users’ code characteristics compare to those
of some of the world’s largest development
organizations. Once measured, the user can compare:
results of a quality initiative over the lifecycle steps of
an application, use of different methodologies, team
structures, training protocols, etc.

Reasoning DMA service provides metrics, giving the
dashboard measurements that let manage quality initiatives
effectively. Some of the possible error tracking with
Reasoning are: NULL pointer assignment, out of array access
bounds, memory leaks, bad deallocation and uninitialized
variables.

III. DATA COLLECTION

We collected and analyzed faults into 700 students’
diploma projects during last 13 years. Data analysis consists
of faults for above 6 million LOC written in C/C++,
developed by bachelor and master of computer science
students. In our analysis we discussed three cases: projects
with inspections, projects with ASA tools testing at first step
and inspections at second, and projects with inspections first
and ASA tool testing after that. For our research purpose we
used different ASA tools, as shown in Table I. In this research
the number of errors found by FlexeLint is four times than
errors found by Reasoning. Therefore we based our analysis
on FlexeLint results.

We denoted students’ diploma projects as SP and defined
two product versions: SP1.0 that have only handle
inspections, SP1.1 that has ASA tool testing and inspections
too.

TABLE I
DATA ANALYSIS

Project Version ASA Inspections
SP1.0 Not performed Yes
SP1.1 FlexeLint, Reasoning Yes

IV. RESULTS

In this section we provided the achieve results. We divided
them into five categories, given in subsections A - D. The
basic goal is to determine whether ASA tools can help to
students to improve their programming techniques and to see
what kind of errors are most frequently occurred in students’
projects. Each section started with a base question and short
explanation of a used metrics to answer to the question in it.
Using of GQM in each section help us to collect and analyze
data. All of data analysis, implication of it are posted and
discussed.

A. Student’s Diploma Project Quality

The question that is important in this section is:

“Will a student’s diploma project be of higher quality if
ASA tool is using in development process?”

To answer to this question we used:
 quantity of defects found by system testing
 quantity of defects found by our testing
Divided by churned thousand lines of code (KLOC).The

results were shown in Table II. Project quality comparison
based on a number of total failures per churned KLOC
(KLOCC). In the table we used SP1.0 as a baseline project for
comparison. We normalized the failures per KLOCC metrics
relatively to the SP1.0 projects. This gives us relative quality
of SP projects.

There is a wide variance in the relative quality of the
projects. As a result, our analysis didn’t provide conclusive
results about whether ASA tools will help to increase the SP
projects quality.

TABLE II
RELATIVE SP DIPLOMA PROJECTS QUALITY

Project Relative Quality
(failures/ KLOCC)

Process
step 1

Process
step 2

SP1.0 1.0 Inspections
SP1.1 1.32 ASA Inspections

B. Fault Detection Yield

The question that we asked in this section is:
“How effective is ASA at detecting faults compared with

inspections and testing?”
To answer to this question we used:
 quantity of ASA faults
 quantity of inspection faults
 quantity of test failures
Fault detection yield (FDY) refers to the percentage of

defects, present in the code at the time of fault detecting
practice [6, 9, 12]. FDY can’t be precisely computed until the
project is used extensively by the users. This measure
decreased as more bugs are found. Additionally we calculated
defect removal efficiency (DRE) [7] as a measure of how well
bugs are removed. Software defect removal efficiency is
percentage of total bugs eliminated in the code. High level of
defect removal efficiency is corresponding to high level of
user satisfaction.

TABLE III
DEFECT REMOVAL YIELD

Project
Version

Phase
ASA

ASA (%) Inspe-
ctions
(%)

Test
(%)

DRE
(%)

SP1.0 Not
performed

Not
preformed

42.31 96.73 98.10

SP1.1 Prior to
inspections

35.00 20.48 98.18 99.05

For SP1.1 ASA performed prior to inspection. No ASA test

is done for SP1.0. The results are shown in Table III.
Research indicates that the user can receive high quality

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

456

 project, if the result is greater than 95% [7, 8, 13, 14]. The
value of DRE is higher than industrial benchmark and this fact
indicated high quality of software project.

These results indicate that defect removal yield of ASA isn’t
significantly different from that of inspections. The defect
removal yield of execution-based testing is two times higher
than that of ASA and therefore may be more effective at
finding the defects.

C. Classes of Faults and Failures

The main questions discussed in this section are:
“What classes of faults and failures are most often

detected by ASA, by inspection and by system testing? What
classes of defects are escaped to the customers?”

To answer to them we used Orthogonal Defect
Classification (ODC) [10, 11]. ODC is a scheme to capture
the semantics of each software defect quickly. It is the
definition and capture of defect attributes that make
mathematical analysis and modeling possible. Analysis of
ODC data provides a valuable diagnostics method for
evaluating the various phases of the software life cycle
(design, development, test and service) and the maturity of the
product. ODC makes it possible to push the understanding and
use of defects well beyond quality.

We measured:
 quantity of ASA faults by ODC type
 quantity of inspection faults by ODC type
We counted faults according to ODC type classification.

Here we will present the results from each metrics.
ASA Faults
Each fault was documented with a problem explanation

and detailed information such as: description, location,
precondition, impact, severity, suggestion and code fragment.
Then every fault was manually classified according to ODC
types. Finally faults were counted and percentages are
calculated. A summary of the results are shown in Table IV.
Only FlexeLint is included in comparison.

TABLE IV
ASA FAULTS CLASSIFICATION ACCORDING TO ODC TAXONOMIES

ODC taxonomy SP1.1 (%)
Assignment
 All tools
 FlexeLint including

80
61

Checking
 All tools
 FlexeLint including

20
50

Other ODC taxonomies 0

The result shown in Table IV indicated that ASA tools are

effective for identifying two ODC types: Assignment and
Checking. Checking defects are happen in low level design or
coding phases and Assignments were occurred only in coding
phase. These problems are due to logical than static analysis.

Inspection Faults
All inspection faults are documented in text file. Every

inspection file was manually created and classified according

ODC types. The result of this classification is shown in
TableV. Note that in handle inspection some additional
properties are documented: readability of code,
maintainability, naming convention, coding standards and
programming style. These comments are approximately 25%
of statements in inspection records. They are not included in
ODC taxonomies.

The results show that inspection identifies Algorithm,
Documentation and Checking faults. Approximately 85% of
all faults belong to these three categories and the distribution
is constant regardless of whether or not ASA tests are
performed.

TABLE V
INSPECTION FAULTS CLASSIFICATION

Defect Type SP1.0 (%)
No ASA

SP1.1 (%)
After
ASA

Algorithm 30.40 38.12
Documentation 29.01 35.13
Checking 26.62 17.85
Assignment 6.33 5.02
Function 1.26 1.74
Interface 2.21 1.02
Build/Package/Merge 4.17 1.12

D. Programming Errors

The questions discussed in this section are:
“What kind of programmer errors is most frequently

identified by ASA? How often does ASA find these errors?”
To answer to them we used:
 quantity of ASA faults by defect type
To avoid differences in defect types among different tools,

only one ASA is used. We chouse FlexeLint, because it
identified most defect types from examined ASA tools. Then
we merged the same and very similar static analysis fault to
performed result aggregation. All data are ranked with most
frequently faults at the top of the list. FlexeLint can detect
more than 800 bugs, but only 33 were found in students’
diploma projects. The faults were given one of the following
severity levels, based on potential failure:

 Critical – this fault can cause application dump,
service outage, system reboot;

 Major – this fault can cause segmentation fault,
memory leaks, resource leaks, data corruption;

 Minor – this fault may result in unexpected behavior;
The results are consistent with the 80-20 rule/Pareto

Principle, i.e. a great majority of the faults identified by few
key programmer errors, as shown in Table VI. “Possible use
of NULL pointer” is most frequently error, identified by ASA
– approximately 47% of all faults. About 92% of faults are
focused on 10 fault types. To improve the code quality we
will used this information in future educations to point the
students what kind of programmer errors are most often
happen in their projects.

There are some additional limitations on this research.
First ASA tool outputs are screening. Second, assigning of

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

457

 severity level is a manually operation and is subjective.

TABLE VI
PARETO EFFECT IN ASA FAULTS

 % all
faults

%
critical
faults

%
major
faults

%
minor
faults

Top 1 fault:
Possible use of NULL
pointer

45.53 63.12 37.23 39.86

Top 5 faults:
Possible use of NULL
pointer
Possible access Out-
Of-Bounds
Pointer not freed or
returned
Memory leak
Variable not initialized
before using

72.63 83.43 59.12 73.64

Top 10 faults:
Possible use of NULL
pointer
Possible access Out-
Of-Bounds
Pointer not freed or
returned
Memory leak
Variable not initialized
before using
Inappropriate
deallocation
Suspicious use of ;
Data overrun
Type mismatch with
switch expression
Control flows into
case/default

92.23 89.45 87.31 93.04

V. CONCLUSION

To examine the quality of automated static analysis tools,
we inspect two ASA tools. In this research we gather
information about ASA tools fault detection, manually
inspection faults and system testing failures in students’
diploma projects. Our analysis provides some results that are
shown in Section 4. Using the received results we can
conclude:

 The defect removal yield of ASA isn’t significantly
different from that of inspections. The defect removal
yield of execution-based testing is two times higher
than that of ASA and therefore may be more effective

at finding the defects.
 The ASA tools are effective for identifying two ODC

types: Assignment and Checking.
 The inspection identifies Algorithm, Documentation

and Checking faults.
 The great majority of the faults identified by few key

programmer errors.
 “Possible use of NULL pointer” is most often fault,

identified by ASA – approximately 47% of all faults.
 About 92% of faults are focused on 10 fault types.
 The ASA tools can be used to find security vulnerable

errors.
In conclusion results indicate that ASA tools are

economical complement to other testing techniques.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the students support of
the research.

REFERENCES

[1] http://www.gimpel.com/html/products.htm
[2] http://www.reasoning.com
[3] M. Young and R.N. Taylor, “Rethinking the Taxonomy of Fault

Detection Techniques,” Proc. Int"l Conf. Software Eng., pp. 53-
62, 1989

[4] Osterweil, “Integrating the Testing, Analysis, and Debugging of
Programs,” Proc. Symp. Software Validation, 1984

[5] N. Rutar, C.B. Almazan and J.S. Foster, “A Comparison of Bug
Finding Tools for Java,” Proc. IEEE Int"l Symp. Software
Reliability Eng. (ISSRE), pp. 245-256, 2004

[6] C. Jones, “Software Defect Removal Efficiency,” Computer,
vol. 29, no. 4, pp. 94-95, Apr. 1996.

[7] C. Jones, Software Assessments, Benchmarks, and Best
Practices. Addison-Wesley, May 2000.

[8] B. Chess, “Improving Computer Security Using Extended Static
Checking,” Proc. IEEE Symp. Security and Privacy, pp. 160-
173, 2002.

[9] V.R Basili, S. Green, oth. “The Empirical Investigation of
Perspective-Based Reading”, Empirical Software Eng. —An
Int"l J., Vol. 1, No. 2, 1996.

[10] R. Chillarege, Bhandari, I.S, oth., “Orthogonal Defect
Classification—A Concept for In-Process Measurements”, IEEE
Trans. Software Eng., vol. 18, no. 11, pp. 943-956, Nov. 1992.

[11] IEEE, “IEEE Standard Classification for Software Anomalies”,
IEEE Standard 1044-1993, 1993.

[12] Humphrey, W.S. A Discipline for Software Engineering.
Addison Wesley, 1995.

[13] Chess B., McGraw, G. “Static Analysis for Security,” IEEE
Security & Privacy, vol. 2, no. 6, pp. 76-79, 2004.

[14] http://www.securityfocus.com

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

458

