
 Paradigms and parallel constructions in modern
computing

Ognian Nakov1, Nadejda Angelova2, Desislava Andreeva3 and Haralambos Dokomes4

Abstract - In the article is described the common usage of
multi-core systems and modern parallel programming
constructions. Programming parallel paradigms are analyzed in
real examples with structured multithreading, parallelization
and execution of concurrent tasks over a mulultiple-cores
structure. Improvements of performance are achieved.

Keywords – Parallelism, Multithreading, Data Flow,

Multitasking.

I. INTRODUCTION

Today, performance is improved by the addition of
processors. So-called multicore systems are now ubiquitous.
Of course, the multicore approach improves performance only
when software can perform multiple activities at the same
time. Functions that perform perfectly well using sequential
techniques must be written to allow multiple processors to be
used if they are to realize the performance gains promised by
the multiprocessor machines [1].

For some time now, programmers have had to think about a
programming challenge related to parallelism — concurrency.

The Microsoft .NET Framework provides the asynchronous
programming model and notions of background workers to
facilitate the common programming concern for parallelism
— concurrency [2].

Parallel programming differs from concurrent programming
in that you must take what is logically a single task—
expressible using familiar sequential constructs supported by
all major languages — and introduce opportunities for
concurrent execution [2]. However, when concurrency
opportunities are introduced with subtasks that share data
objects, you have to worry about locking and races.

We’ll describe and analyze some major approaches to
parallel paradigms and practices and illustrate their use
through abstractions that are under development. In particular,
we’ll illustrate both the C++ Parallel Pattern Library (PPL)
[2,3]and the Parallel Extensions to .NET using C#.

II. STRUCTURED MULTITHREADING

Structured multithreading refers to providing parallel forms
of key block-structured sequential statements. For example, a
compound statement { A; B; } with sequential semantics
where A is evaluated and then B is evaluated is made into a
parallel statement by allowing A and B to be evaluated
concurrently. The whole construct, however, does not
complete, and control continues to the next construct until
both subtasks have finished. This is an old concept and
historically taught as a cobegin statement. It is sometimes
referred to as "fork-join parallelism" to emphasize the
structure. The same basic idea can be applied to loops where
each iteration defines a task that may be evaluated
concurrently with all the other iterations. Such a parallel loop
completes when all iteration tasks complete.

A familiar example of the divide-and-conquer concept is
the famous QuickSort algorithm. We'll illustrate a
straightforward parallelization of this algorithm using C++
constructs. There are 2 new features involved. The first feature
demonstrated is the new C++ lambda syntax that makes it
extremely convenient to capture an expression or statement
list as a function object. The new syntax:

[=] { ParQuickSort(data, mid);

creates a function object that, when it's invoked, will evaluate
the code between the braces:

void ParQuickSort(T * data, int length, T* scratch)
{
 …
 int mid = ParPartition(data[0], data,length,..);
 parallel_invoke(
 [=] { ParQuickSort(data, mid); },
 [=] { ParQuickSort(data+mid, length-mid); });
}

The leading [=] marks the lambda and indicates that any

variables in outer scopes referenced in the expression should
be copied into the object and that references to those variables
in the body of the lambda will refer to those copies.

The parallel_invoke is a template algorithm that, in this
case, takes two such function objects and evaluates each one
as a separate task so that those tasks may run concurrently.
When both tasks complete and, in this case, both of the
recursive sorts have been completed, the parallel_invoke
returns and the sort is then complete.

A use of parallel loops might be code to perform a ray-
tracing problem. Such a problem is trivially parallel over each

1Ognian Nakov is with the Faculty of Computer System and
Control at Technical University of Sofia, 8 Kl. Ohridski Blvd, Sofia
1000, Bulgaria, E-mail: nakov@tu-sofia.bg

2Nadejda Angelova is with the Faculty of Computer System and
Control at Technical University of Sofia, 8 Kl. Ohridski Blvd, Sofia
1000, Bulgaria, E-mail: nade.angelova@gmail.com

3Desislava Andreeva is with the Faculty of Computer System and
Control at Technical University of Sofia, 8 Kl. Ohridski Blvd, Sofia
1000, Bulgaria, E-mail: dandreeva@tu-sofia.bg

4Haralambos Dokomes is with the Faculty of Computer System
and Control at Technical University of Sofia, 8 Kl. Ohridski Blvd,
Sofia 1000, Bulgaria

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

459

 output pixel. This is expressed using the Parallel.For method
from the Parallel Extensions to .NET. This code assumes that
the various methods invoked in the body of a loop are safe for
concurrent execution.

public void RenderParallel (Scene scene, Int32[] rgb)
{
 Parallel.For (0, screenHeight, y =>
 {
 Parallel.For (0, screenWidth, x =>
 {
 … });
 }
 };

Structured multithreading is ideal for working with

parallelism where there is a natural, perhaps recursive,
possibly irregular, data structure where the parallelism reflects
that structure. The following example traverses a graph in a
topological order and don't visit a node before having seen all
predecessors. After visiting a node, we decrement the counts
of successors (careful to make this a safe operation since
multiple predecessor tasks may attempt it at once).

void topsort(Graph * g, void (*action)(Node*))
{
 g->forall_nodes([=] (Node *n)
 {
 n->count = n->num_predecessors();
 n->root = (n->count == 0);
 });
 g->forall_nodes([=] (Node *n)
 {
 if(n->root) visit(n, action);
 });
}

 We have two phases: the first counts predecessors and
identifies root nodes; the second starts a depth-first search
from each root that decrements and ultimately visits
successors:

// Assumes all predecessors have been visited.
void visit(Node *n, void (*action)(Node*))
{
 (*action)(n);
 parallel_for_each(n->successors.begin(),
 n->successors.end(),
 [=](Node *s)
 {

if(atomic_decrement(s->count) == 0)
// safely does "-- s->count"
visit(s, action);

 });
}

The parallel_for_each method traverses the list of

successors, applies a function object to each, and allows those
operations to be done in parallel. Not shown is the assumed

atomic_decrement function that uses some strategy for
arbitrating concurrent accesses.

The structure of this algorithm guarantees that "action" is
given exclusive access to its parameter so no additional
locking is needed if action updates those fields. Further, there
are guarantees that all predecessors have been updated and are
not changing, and that no successor has been updated and will
not change until this action completes.

III. DATA PARALLELISM

Data parallelism refers to the application of some common
operation over an aggregate of data either to produce a new
data aggregate or to reduce the aggregate to a scalar value.
The parallelism comes from doing the same logical operation
to each element independent of the surrounding elements.
There have been many languages with various levels of
support for aggregate operations, but by far the most
successful has been the one used with databases—SQL. LINQ
provides direct support in both C# and Visual Basic for SQL-
style operators, and the queries expressed with LINQ can be
handed off to a data provider, such as ADO.NET, or can be
evaluated against in-memory collections of objects or even
XML documents.

Part of Parallel Extensions to .NET is an implementation of
LINQ to Objects and LINQ to XML that includes parallel
evaluation of the query. This implementation is called PLINQ
and can be used to work conveniently with data aggregates.

The difference between LINQ and PLINQ is the AsParallel
method on the data-collection points. One subtle point is the
opposite - Aggregate operator. His third parameter is a
delegate that provides a mechanism to combine results. With
this method, the implementation is done in a parallel style by
blocking the input into chunks, reducing each chunk in
parallel, and then combining the partial results.

IV. DATA FLOW

A common technique for exploiting parallelism is through
the use of pipelining. Using this model, a data item flows
between various stages of the pipeline where it is examined
and transformed before being passed on to the next stage.
Data flow is the generalization of the idea where data values
flow between nodes in a graph, and computation is triggered
based on the availability of input data. Parallelism is exploited
both by having distinct nodes executing concurrently and by
having one node activated multiple times on different input
data.

Parallel Extensions to .NET supports the ability to
explicitly create individual tasks (of type Task, the underlying
mechanism for implementing structured multitasking) and
then to identify a second task that begins execution when the
first completes. The concept of a future is used as a bridge
between the worlds of imperative programming and data-flow
programming. A future is the name of a value that will
eventually be produced by a computation. This separation
allows me to define what to do with a value before I know that
value.

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

460

 The continueWith() on a future is parameterized by a
delegate that will be used to create a task that will be executed
when the future value is available. The result of a call to
continueWith is a new future that identifies the result of the
delegate parameter.

As an example of this style, consider the parallelism within
the Strassen optimized matrix multiplication algorithm.

One of these tasks might look like this:
var m1 = Future.StartNew(()
=> (A(1,1)+B(1,1))*(A(2,2)+B(2,2));
The first seven of the subtasks are independent, but the last

four depend on the first seven as inputs. The basic data-flow
graph would look like Figure 1. Here, the task labeled c11
depends on the results of tasks m2 and m3. I want that task to
become eligible for execution when its inputs are available. In
C# this can be expressed as:
var c11 = Task.ContinueWhenAll(delegate { ... }, m2,m3);

Figure 1

V. STREAMING PARALLELISM

Beyond multiple cores, a second important feature of
computer architecture is the multiple layers of memory
hierarchy: registers, one or more levels of on-chip cache,
DRAM memory, and, finally, demand paging to disk. Most
programmers are blissfully unfamiliar with this aspect of
system architecture because their programs are modest in size
and fit well enough in the cache to which most references to
memory are quickly returned. However, if a data value is not
in the on-chip cache, it can take hundreds of cycles to fetch it
from DRAM. The latency of providing this data makes the
program appear to run slower since the processor spends a
large fraction of the time waiting for data.

Some processor architectures support multiple logical
processors per physical processing core. This is usually called
(hardware) multithreading, and modest amounts of this have
been used in mainstream processors (Intel has called this
hyper-threading in some of its products). A motivation for
multithreading is to tolerate the latency of memory access;
when one logical hardware thread is waiting on memory,
instructions can be issued from the other hardware threads.

As the number of processing cores grows, the number of
requests it can make on a memory system increases and a
different problem emerges, one of bandwidth limitations. A
processor will be able to support only so many transfers per
second to or from DRAM memory. When this limit is
reached, there is no chance to get any gains through further
use of parallelism; additional threads will just generate
additional memory requests that will simply queue up behind
earlier requests and wait to be serviced by memory
controllers.

While there have been proposals for special purpose
languages to allow streaming algorithms to be specified and
their execution carefully planned, it is also possible to achieve
this in many cases by careful scheduling. For instance, you
can apply this technique to the QuickSort example. If the size
of the data set you are sorting is so large that it does not fit in
the cache, the straightforward work-stealing approach will
tend to schedule the largest and coarsest subproblems onto
different cores, which then work on independent data sets and
lose the benefit of a shared on-chip cache.

If, however, you modify the algorithm to use only
parallelism on data sets that fit in the cache, you gain the
benefits of streaming. In this example, you still break large
problems into smaller problems (and use parallelism in the
partitioning step), but if both sub-problems won't fit in the
cache at the same time, then we'll do them sequentially.

Use Parallelism on Smaller Data Sets
if(sizeof(*data)*length < cache_size)
{
 parallel_invoke(
 [=]{ ParQuickSort(data, mid, cache_size);
 [=]{ ParQuickSort(data+mid, length-mid, cache_size);});
}
else
{
 ParQuickSort(data,mid,cache_size);
 ParQuickSort(data+mid, length-mid, cache_size);
}

VI. SINGLE – PROGRAM AND MULTIPLE

In the high-performance computing arena the kinds of
problems are dominated by parallel loops over arrays of data
where the bodies of the loops typically have a fairly simple
code structure.

The earlier ray-tracing fragment is an example. The
dominant parallelism model that emerged was called single-
program, multiple-data, frequently abbreviated as SPMD. In
this model, programmers think about the behavior of each
processor (worker, thread) as a set of processors that logically
participate in a single problem but share the work. Typically
the work is separate iterations of a loop that work with
different parts of arrays.

The notion of work sharing in an SPMD style is at the heart
of the OpenMP of extensions to C, C++, and Fortran. The core
concept here is a parallel region where a single thread of
activity forks into a team of threads that then cooperatively
execute shared loops. A barrier synchronization mechanism is
used to coordinate this team so that the entire team moves as a
group from one loop nest to the next to insure that data values
are not read before they have been computed by teammates.
At the end of the region, the team comes back together, and
the single original thread continues on until the next parallel
region.

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

461

 VII. CONCURRENT DATA STRUCTURES

The previous discussion has focused almost entirely on
control parallelism - how to identify and describe separate
tasks that can be mapped down to the multiple cores that may
be available. There is also a data side related to parallelism. If
the effect of a task is to update a data structure, say insert a
value into a Hashtable, that operation may be logically
independent of concurrently executing tasks.

Simply putting a single lock around the whole data
structure may create a bottleneck in the program where all of
the tasks serialize, resulting in a loss of parallelism because
too few data locations are concurrently in use.

It is thus important to create, in addition to the parallel
control abstractions, new concurrent versions of common data
structures - Hashtables, stacks, queues, various kinds of set
representations. These versions have defined semantics for the
supported methods that may be invoked concurrently, and
they are engineered to avoid bottlenecks when accessed by
multiple tasks.

As part of the PPL and Parallel Extensions to .NET,
Microsoft provides suitable implementations of vectors,
queues, and Hashtables that can be used as building blocks.

VIII. CONCLUSION

We proposе an illustration of modern parallel paradigms
introduced in C++ Parallel Pattern Library (PPL). The first
feature analyzed is the new C++ lambda syntax, illustrated in
an example of statement list in a function object.

A parallel solution is presented also for a pixel iteration
task. Some suggestions are made concerning structured
multithreading which is ideal for dealing with parallelism. A
programming technique is proposed for exploiting parallelism
through the use of pipelining. Different programming tools
are included - multitasking, parameterization through
delegates, coherence with multicore arhitecture and
multithreading.

REFERENCES

 [1] Jouppi N., The future evolution of High – Performance
microprocessors, Stanford University, Stanford.edu/class/ee380/
abstract/060927.html

[2] MSDN Xi 2008, Microsoft Corp.
[3] Bokar Sh. Thousand core chips: a technology perspective,

video.dac.com/44th/papers/42_1.pdf

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

462

