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and execution of concurrent tasks over a mulultiple-cores 
structure. Improvements of performance are achieved.  
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I. INTRODUCTION 

Today, performance is improved by the addition of 
processors. So-called multicore systems are now ubiquitous. 
Of course, the multicore approach improves performance only 
when software can perform multiple activities at the same 
time. Functions that perform perfectly well using sequential 
techniques must be written to allow multiple processors to be 
used if they are to realize the performance gains promised by 
the multiprocessor machines [1].  

For some time now, programmers have had to think about a 
programming challenge related to parallelism — concurrency.  

The Microsoft .NET Framework provides the asynchronous 
programming model and notions of background workers to 
facilitate the common programming concern for parallelism 
— concurrency [2].  

Parallel programming differs from concurrent programming 
in that you must take what is logically a single task—
expressible using familiar sequential constructs supported by 
all major languages — and introduce opportunities for 
concurrent execution [2]. However, when concurrency 
opportunities are introduced with subtasks that share data 
objects, you have to worry about locking and races.  

We’ll describe and analyze some major approaches to 
parallel paradigms and practices and illustrate their use 
through abstractions that are under development. In particular, 
we’ll illustrate both the C++ Parallel Pattern Library (PPL) 
[2,3]and the Parallel Extensions to .NET using C#. 

II. STRUCTURED MULTITHREADING 

Structured multithreading refers to providing parallel forms 
of key block-structured sequential statements. For example, a 
compound statement { A; B; } with sequential semantics 
where A is evaluated and then B is evaluated is made into a 
parallel statement by allowing A and B to be evaluated 
concurrently. The whole construct, however, does not 
complete, and control continues to the next construct until 
both subtasks have finished. This is an old concept and 
historically taught as a cobegin statement. It is sometimes 
referred to as "fork-join parallelism" to emphasize the 
structure. The same basic idea can be applied to loops where 
each iteration defines a task that may be evaluated 
concurrently with all the other iterations. Such a parallel loop 
completes when all iteration tasks complete. 

A familiar example of the divide-and-conquer concept is 
the famous QuickSort algorithm. We'll illustrate a 
straightforward parallelization of this algorithm using C++ 
constructs. There are 2 new features involved. The first feature 
demonstrated is the new C++ lambda syntax that makes it 
extremely convenient to capture an expression or statement 
list as a function object. The new syntax: 

 
[=] { ParQuickSort(data, mid); 
 

creates a function object that, when it's invoked, will evaluate 
the code between the braces: 
 
void ParQuickSort(T * data, int length, T* scratch)  
{   
       …  
       int mid = ParPartition(data[0], data,length,..); 
       parallel_invoke(                 
       [=] { ParQuickSort(data, mid); },                 
       [=] { ParQuickSort(data+mid, length-mid); }); 
} 

 
The leading [=] marks the lambda and indicates that any 

variables in outer scopes referenced in the expression should 
be copied into the object and that references to those variables 
in the body of the lambda will refer to those copies.  

The parallel_invoke is a template algorithm that, in this 
case, takes two such function objects and evaluates each one 
as a separate task so that those tasks may run concurrently. 
When both tasks complete and, in this case, both of the 
recursive sorts have been completed, the parallel_invoke 
returns and the sort is then complete.  

A use of parallel loops might be code to perform a ray-
tracing problem. Such a problem is trivially parallel over each 
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 output pixel. This is expressed using the Parallel.For method 
from the Parallel Extensions to .NET. This code assumes that 
the various methods invoked in the body of a loop are safe for 
concurrent execution.  

 
public void RenderParallel (Scene scene, Int32[ ] rgb)  
{     
       Parallel.For (0, screenHeight, y =>  
       {         
              Parallel.For  (0, screenWidth, x =>  
             {             
                 … });  
        } 
 }; 

 
Structured multithreading is ideal for working with 

parallelism where there is a natural, perhaps recursive, 
possibly irregular, data structure where the parallelism reflects 
that structure. The following example traverses a graph in a 
topological order and don't visit a node before  having seen all 
predecessors. After visiting a node, we decrement the counts 
of successors (careful to make this a safe operation since 
multiple predecessor tasks may attempt it at once).  

 
void topsort(Graph * g, void (*action)(Node*))  
{     
       g->forall_nodes([=] (Node *n)  
       {         
              n->count = n->num_predecessors();         
              n->root = (n->count == 0);      
        }); 
        g->forall_nodes([=] (Node *n)  
        {         
              if(n->root) visit(n, action);     
         }); 
} 

 We have two phases: the first counts predecessors and 
identifies root nodes; the second starts a depth-first search 
from each root that decrements and ultimately visits 
successors: 

 
// Assumes all predecessors have been visited. 
void visit(Node *n, void (*action)(Node*))  
{     
       (*action)(n);     
       parallel_for_each(n->successors.begin(),   
       n->successors.end(),           
       [=](Node *s)  
       {            

if(atomic_decrement(s->count) == 0)  
// safely does "-- s->count"              
visit(s, action);     

        });   
} 

 
The parallel_for_each method traverses the list of 

successors, applies a function object to each, and allows those 
operations to be done in parallel. Not shown is the assumed 

atomic_decrement function that uses some strategy for 
arbitrating concurrent accesses.  

The structure of this algorithm guarantees that "action" is 
given exclusive access to its parameter so no additional 
locking is needed if action updates those fields. Further, there 
are guarantees that all predecessors have been updated and are 
not changing, and that no successor has been updated and will 
not change until this action completes.  

III.  DATA PARALLELISM 

Data parallelism refers to the application of some common 
operation over an aggregate of data either to produce a new 
data aggregate or to reduce the aggregate to a scalar value. 
The parallelism comes from doing the same logical operation 
to each element independent of the surrounding elements. 
There have been many languages with various levels of 
support for aggregate operations, but by far the most 
successful has been the one used with databases—SQL. LINQ 
provides direct support in both C# and Visual Basic for SQL-
style operators, and the queries expressed with LINQ can be 
handed off to a data provider, such as ADO.NET, or can be 
evaluated against in-memory collections of objects or even 
XML documents. 

Part of Parallel Extensions to .NET is an implementation of 
LINQ to Objects and LINQ to XML that includes parallel 
evaluation of the query. This implementation is called PLINQ 
and can be used to work conveniently with data aggregates.  

The difference between LINQ and PLINQ is the AsParallel 
method on the data-collection points. One subtle point is the 
opposite - Aggregate operator. His third parameter is a 
delegate that provides a mechanism to combine results. With 
this method, the implementation is done in a parallel style by 
blocking the input into chunks, reducing each chunk in 
parallel, and then combining the partial results. 

IV.  DATA FLOW 

A common technique for exploiting parallelism is through 
the use of pipelining. Using this model, a data item flows 
between various stages of the pipeline where it is examined 
and transformed before being passed on to the next stage. 
Data flow is the generalization of the idea where data values 
flow between nodes in a graph, and computation is triggered 
based on the availability of input data. Parallelism is exploited 
both by having distinct nodes executing concurrently and by 
having one node activated multiple times on different input 
data. 

Parallel Extensions to .NET supports the ability to 
explicitly create individual tasks (of type Task, the underlying 
mechanism for implementing structured multitasking) and 
then to identify a second task that begins execution when the 
first completes. The concept of a future is used as a bridge 
between the worlds of imperative programming and data-flow 
programming. A future is the name of a value that will 
eventually be produced by a computation. This separation 
allows me to define what to do with a value before I know that 
value.  
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 The continueWith() on a future is parameterized by a 
delegate that will be used to create a task that will be executed 
when the future value is available. The result of a call to 
continueWith is a new future that identifies the result of the 
delegate parameter.  

As an example of this style, consider the parallelism within 
the Strassen optimized matrix multiplication algorithm.  

One of these tasks might look like this: 
var m1 = Future.StartNew(()  
=> (A(1,1)+B(1,1))*(A(2,2)+B(2,2)); 
The first seven of the subtasks are independent, but the last 

four depend on the first seven as inputs. The basic data-flow 
graph would look like Figure 1. Here, the task labeled c11 
depends on the results of tasks m2 and m3. I want that task to 
become eligible for execution when its inputs are available. In 
C# this can be expressed as:  
var c11 = Task.ContinueWhenAll(delegate { ... },  m2,m3); 
 

 
 

Figure 1 

V. STREAMING PARALLELISM 

Beyond multiple cores, a second important feature of 
computer architecture is the multiple layers of memory 
hierarchy: registers, one or more levels of on-chip cache, 
DRAM memory, and, finally, demand paging to disk. Most 
programmers are blissfully unfamiliar with this aspect of 
system architecture because their programs are modest in size 
and fit well enough in the cache to which most references to 
memory are quickly returned. However, if a data value is not 
in the on-chip cache, it can take hundreds of cycles to fetch it 
from DRAM. The latency of providing this data makes the 
program appear to run slower since the processor spends a 
large fraction of the time waiting for data.  

Some processor architectures support multiple logical 
processors per physical processing core. This is usually called 
(hardware) multithreading, and modest amounts of this have 
been used in mainstream processors (Intel has called this 
hyper-threading in some of its products). A motivation for 
multithreading is to tolerate the latency of memory access; 
when one logical hardware thread is waiting on memory, 
instructions can be issued from the other hardware threads.  

As the number of processing cores grows, the number of 
requests it can make on a memory system increases and a 
different problem emerges, one of bandwidth limitations. A 
processor will be able to support only so many transfers per 
second to or from DRAM memory. When this limit is 
reached, there is no chance to get any gains through further 
use of parallelism; additional threads will just generate 
additional memory requests that will simply queue up behind 
earlier requests and wait to be serviced by memory 
controllers.  

While there have been proposals for special purpose 
languages to allow streaming algorithms to be specified and 
their execution carefully planned, it is also possible to achieve 
this in many cases by careful scheduling. For instance, you 
can apply this technique to the QuickSort example. If the size 
of the data set you are sorting is so large that it does not fit in 
the cache, the straightforward work-stealing approach will 
tend to schedule the largest and coarsest subproblems onto 
different cores, which then work on independent data sets and 
lose the benefit of a shared on-chip cache.  

If, however, you modify the algorithm to use only 
parallelism on data sets that fit in the cache, you gain the 
benefits of streaming. In this example, you still break large 
problems into smaller problems (and use parallelism in the 
partitioning step), but if both sub-problems won't fit in the 
cache at the same time, then we'll do them sequentially.  

 
Use Parallelism on Smaller Data Sets  
if(sizeof(*data)*length < cache_size) 
{ 
       parallel_invoke(  
       [=]{ ParQuickSort(data, mid, cache_size);                  
       [=]{ ParQuickSort(data+mid, length-mid, cache_size);}); 
} 
else  
{                   
       ParQuickSort(data,mid,cache_size);    
       ParQuickSort(data+mid, length-mid, cache_size);     
}     
 

VI. SINGLE – PROGRAM AND MULTIPLE 

In the high-performance computing arena the kinds of 
problems are dominated by parallel loops over arrays of data 
where the bodies of the loops typically have a fairly simple 
code structure.  

The earlier ray-tracing fragment is an example. The 
dominant parallelism model that emerged was called single-
program, multiple-data, frequently abbreviated as SPMD. In 
this model, programmers think about the behavior of each 
processor (worker, thread) as a set of processors that logically 
participate in a single problem but share the work. Typically 
the work is separate iterations of a loop that work with 
different parts of arrays. 

The notion of work sharing in an SPMD style is at the heart 
of the OpenMP of extensions to C, C++, and Fortran. The core 
concept here is a parallel region where a single thread of 
activity forks into a team of threads that then cooperatively 
execute shared loops. A barrier synchronization mechanism is 
used to coordinate this team so that the entire team moves as a 
group from one loop nest to the next to insure that data values 
are not read before they have been computed by teammates. 
At the end of the region, the team comes back together, and 
the single original thread continues on until the next parallel 
region.  
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 VII. CONCURRENT DATA  STRUCTURES 

The previous discussion has focused almost entirely on 
control parallelism - how to identify and describe separate 
tasks that can be mapped down to the multiple cores that may 
be available. There is also a data side related to parallelism. If 
the effect of a task is to update a data structure, say insert a 
value into a Hashtable, that operation may be logically 
independent of concurrently executing tasks.  

Simply putting a single lock around the whole data 
structure may create a bottleneck in the program where all of 
the tasks serialize, resulting in a loss of parallelism because 
too few data locations are concurrently in use. 

It is thus important to create, in addition to the parallel 
control abstractions, new concurrent versions of common data 
structures - Hashtables, stacks, queues, various kinds of set 
representations. These versions have defined semantics for the 
supported methods that may be invoked concurrently, and 
they are engineered to avoid bottlenecks when accessed by 
multiple tasks.  

As part of the PPL and Parallel Extensions to .NET, 
Microsoft  provides suitable implementations of vectors, 
queues, and Hashtables that can be used as building blocks.  

VIII. CONCLUSION 

We proposе an illustration of modern parallel paradigms 
introduced in C++ Parallel Pattern Library (PPL). The first 
feature analyzed is the new C++ lambda syntax, illustrated in  
an example of statement list in a function object.  

A parallel solution is presented also for a pixel iteration 
task. Some suggestions are made concerning structured 
multithreading which is ideal for dealing with parallelism. A 
programming technique is proposed for exploiting parallelism 
through the use of pipelining. Different programming tools 
are included - multitasking, parameterization through 
delegates, coherence with multicore arhitecture and 
multithreading. 
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