

DDR3 SDRAM with a Complete Predictor

Vladimir V. Stankovic1, Nebojsa Z. Milenkovic1

Abstract – In the arsenal of resources for computer memory

system performance improvement, predictors have gained an
increasing role in the past years. They enable hiding the latencies
when accessing cache or main memory. In our previous work we
have shown how average latency of DRAM memories can be
decreased using various predictors. In three our papers we have
considered three such predictors - a Dead-time predictor, a Zero-
live-time predictor, and an Open-page predictor. All these
predictors were used in simulators that simulate DDR SDRAM
memory. In this paper we have integrated all the predictors and
added them to a simulator that simulates a contemporary DDR3
SDRAM memory, written by ourselves. The results confirm the
efficiency in using predictors.

Keywords – DRAM, memory, latency, DRAM controller,

DRAM controller policy, predictor, bank, row.

I. INTRODUCTION

A desire for better potential utilization of processors, which

are becoming faster and faster, demands a memory system
with similar performances. A critical ring in the hierarchically
organized memory system is the main memory, implemented
with chips of dynamic memory (DRAM – Dynamic Random
Access Memory). In order to achieve as large bandwidth as
possible, the chips of contemporary DRAM memories are
organized with several independent memory banks, allow
memory accesses pipelining, and buffer the data from the last
activated row in each bank. Although increasing the memory
bandwidth, these solutions make the contemporary DRAM
memories performances dependable on memory access
patterns. Contemporary DRAM memories are not really
random access memories, characterized with identical access
times to all locations in them. They are actually three-
dimensional memories, with banks, rows, and columns as
dimensions. DRAM data access with row opening demands
the following time: Tacc = Trp+Tra+Tca, where Trp is row
precharge time, Tra is row activate/access time, and Tca is
column access time.

Using of read and write commands with autoprecharge
eliminates the precharge time when the next access occurs,
reducing the access time to Tra+Tca. Data accesses into
already opened rows eliminate the precharge time and row
access time, reducing the access time to Tca. The result is that
consecutive accesses to different rows into single memory
bank have larger latencies than consecutive accesses into the
same row. Performances maximization of DRAM memories
demands minimization of participation of precharges and rows
openings.

This makes that we can influence DRAM memory latency
by controlling the data placement into banks and rows. This is

the basis of papers in which address remappings are
considered, which transform memory addresses into banks,
rows and columns that optimize DRAM performances for
certain memory access patterns [3, 4].

DRAM memory latency can be decreased if the opened row
is closed before occurring of the next data access directed to
the same bank, but to different row. In that way the precharge
time Trp is being hidden, so the latency is practically reduced
to Tacc = Tra+Tca. The latency could be additionally reduced
to Tacc = Tca, by hiding the row access time. This demands
the next row that is going to be accessed, to be opened in
advance. In-time closing of the opened row demands a
prediction when to close the opened row. Opening in advance
the next row to be accessed demands a prediction which row
to open and when.

Papers [1, 2] deal with possibilities to predict the moment
when the data block in the cache memory is to be declared
'dead' (i.e. unnecessary present in the cache, because it is not
to be used in the near future) and when and which data block
to fetch to the cache in advance. This inspired us to
investigate the possibilities of applying some of those ideas on
DRAM memory performance optimization. In this paper we
have restrained on ideas from [1], which relate to applying
metrics of characteristic time parameters of data blocks
transferred to cache memory. Analogically, we have defined
proper characteristic time parameters for DRAM memories.
By simulation, we have concluded that DRAM memory
accesses have some regularity that can be used for prediction
when to close the opened row, and which is the next row to be
opened. Based on those results, we have proposed three
predictors. Two of them predict when to close the opened
row, and the third one predicts the next row to be opened. In
our previous papers [5, 6, 7] we have simulated using these
predictors with a DDR SDRAM memory. In this paper we try
using them on a contemporary DDR3 SDRAM memory. The
simulator for this memory was written by ourselves.

DDR3 SDRAM memories are the most advanced type of
commodity SDRAM memories. They have several new
features which enable improving the control of them and
increasing their performances, mainly through higher
bandwidth. DDR3 SDRAM devices support posted CAS
commands, which allows a DDR3 SDRAM memory
controller to treat a row activation command and a column
access command as a unitary command pair to be issued in
consecutive cycles. This is simpler then issuing two separate
commands which must be properly controlled and timed, as in
DDR SDRAM. In addition, DDR3 SDRAM devices of all
capacities have at least 8 banks of independent DRAM arrays
that increase the capacity of sens amplifiers as buffers with
reduced access time. Also, DDR3 devices can work at clock
frequency range from 300÷800 MHz, with transfer rates up to
1600 MT/s. These changes influence more positively on
bandwidth increase than on latency reduction defined by

1Authors are with the Faculty of Electronic Engineering,
Aleksandra Medvedeva 14, 18000 Nis, Serbia. E-mail:
[vladimir.stankovic, nebojsa.milenkovic]@elfak.ni.ac.yu

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

463

characteristic time parameters Trp, Tra, Tca, what causes
increase of latency relative participation in the complete time
needed for a data block transfer. For example, a DDR3
SDRAM Micron MT41J128M8 memory [9] has the following
parameters: fcm = 800MHz, Tcm = 1.25ns, data transfer rate:
1600MT/s, Trp = Tra = Tca = 12.5ns. For a Wdb=64B data
block read to be performed, the DRAM module with
Wm=64lines=8B, a single burst with a length of
Lburst=Wdb/Wm=8 is needed. The time needed for sending
such data block to the controller, in the best case is:

Tca + Lburst x 1/2 x Tcm = 10Tcm + 4Tcm = 14Tcm, with
a latency participation of 10/14 = 0.714, or 71.4%.
In the worst case this time is Trp + Tra + Tca + Lburst x 1/2 x
Tcm = 30Tcm+4Tcm=34Tcm, with a latency participation of
30/34=0.882, or 88.2%.

The paper is organized as follows. In section II the basic
idea, and in section III the predictors’ design and
implementation, are exposed. Section IV contains the used
simulation model, and section V gives a review of the
obtained results. Section VI is the conclusion.

II. BASIC IDEA

A classic DRAM controller uses two possible policies:

Open Row and Close Row. When using the first one, the row
is kept opened, which gives latency of Tca if the next DRAM
access is directed to the opened row, and Trp+Tra+Tca, if the
next DRAM access is directed to some other row. When using
the second policy, a row is being closed after every access, so
the latency is always the sum Tra+Tca. The first policy gives
good results with programs that have good memory access
locality, and the second one with programs whose DRAM
accesses have random character. Our goal is to achieve a
policy more efficient than the both policies for both types of
programs. This can be achieved if the opened row is kept open
for as long as there are accesses into it, and then closed after
the last access into it. After that the next row to be opened
should be predicted and opened in advance.

Let us define the metrics from [1] related to DRAM. Live
time is a time interval that elapses from opening the row in a
bank until the last access into that row before its closing.
Dead time is a time which elapses from the last access to an
open row until the moment of its closing. Access interval is a
time interval which elapses between two consecutive accesses
to an open row in a bank. A live time of an open row is called
a zero live time, if after its opening there are no further
accesses to that row till its closing.

In this paper we consider a DRAM controller with 2
predictors: a Close-page predictor, and an Open-page
predictor. First the Close-page predictor predicts when to
close the currently opened DRAM row. After that, the Open-
page predictor predicts the next row to be opened. In case of
accurate predictions the latency time is reduced to only Tca.

The mentioned Close-page predictor consists of two
predictors: a Zero-live-time predictor and a Dead-time
predictor. The first predictor is used always when a new row
is opened, and it predicts whether its live time will be a zero
live time or not. If yes, that row is closed immediately after
completing the DRAM access. If not, the row is kept opened

and after that access, and during further accesses the Dead-
time predictor is used to predict whether that row has entered
its dead time. If it has, the row is closed, if not it is kept open.

In case of a prediction that closes the row (either by the
Zero-live-time or by the Dead-time predictor) the Open-page
predictor is activated. This predictor consists of two tables -
Row History Table and Pattern History Table. Based on them,
the next row to be opened is predicted, and then opened.

In next section all the predictors are described in detail.

III. PREDICTORS’ DESIGN AND IMPLEMENTATION

The Zero-live-time predictor uses two bits for each row in

the DRAM. Those two bits are used as a saturated counter,
with values from 0 to 3. Every time a zero live time occurs the
counter is incremented, except its previous value was 3. Every
time a nonzero live time occurs the counter is decremented,
except its previous value was 0. When predicting, it is
predicted that the live time will be a zero live time if the
counter’s value is 2 or 3, i.e. nonzero live time if the counter’s
value is 0 or 1. The starting counter’s value is 0.

Implementation of this predictor is simple. It may be in a
form of a SRAM memory with suitable organization
integrated into the DRAM controller, since number of rows in
the system may have large values. For example, a DDR3
DRAM chip that has 8 banks with 8K rows each, demands
128Kb or 16KB. Changing the values of the counter
(incrementing, decrementing, resetting) is done by read-
modify-writes. When predicting, a read is performed, and
depending on the value being read, the controller will issue
commands with autoprecharge, or not.

The Dead-time predictor is based on access interval time
values. Our simulation results showed that the average dead
time is several times larger than the average access interval
time, so that fact is used for dead time prediction. When a
value that is the last access interval time, multiplied by 2,
elapses, it is predicted that the row has entered its dead time.
So the only value that is being taken care of is the last access
interval time. We used one register for storing the access
interval time for each bank in the system.

The implementation of the Dead-time predictor demands
the DRAM controller to have one counter for each bank (to
take care of the elapsed time since the last access), one
register for each bank, for storing the last access interval
value, and one comparator for each bank (for comparing the
access interval register value with the counter). In order to
minimize the counters' length, they could be triggered with a
signal derived by dividing the DRAM’s clock. A simple shift
operation by 1 position over the access interval register would
be needed for defining the boundary value. By comparing this
value with the counter the controller would decide whether to
issue a precharge command or not. A controller that
implements Open Row Policy already has a register for each
bank for storing the last open row index, and a comparator for
comparing the current access row index with that register. So
the hardware added to a DRAM controller which implements
the Dead-time predictor would have similar complexity as the
mentioned implementation of Open Row Policy.

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

464

The structure of the Open-page predictor is presented in

Figure 1. It consists of two tables – Row History Table
(RHT), and Pattern History Table (PHT). RHT stores the last
k rows that were activated in each of the banks, and PHT
contains the predictions. PHT has m ≤ n items, where n is
number of bank rows. Each item contains j two-part fields:
row and next predicted row (rk and rnxt). PHT access index is
obtained as t least significant bits of the sum (trancated
addition) of the last k row indeces from the proper item for
that bank in RHT, so m=2t.

Fig. 1. Structure of the Open-page predictor

Implementation of the Open-page predictor would demand

g⋅b⋅k⋅⎡log2n⎤ bits for RHT (g is the number of DRAM chip
ranks, b is the number of banks per rank) and m⋅j⋅2⋅⎡log2n⎤
bits for PHT. Also, one t-bit adder and a multiplexer of type
(k,1)×t are needed, for a control block implemented as a finite
state machine. For the adopted DRAM structure of 2GB with
k=4, m=4096 and j=2, 832B are needed for RHT and 26KB
for PHT.

IV. SYSTEM SIMULATION MODEL

For simulation we have used the program Sim-Outorder

from the Simplescalar Tool Set [8]. We have integrated this
simulator with a program that simulates DDR3 SDRAM
memory, written by ourselves. This integrated simulator
performs an execution-driven simulation, which is much more
accurate than trace-driven simulations. The characteristics of
the simulated processor are: a superscalar processor that
issues at most 4 instructions on every clock cycle and supports
out of order instruction execution, uses a two-level branch
predictor, and has two levels of cache memories. The first one
contains separate instruction and data caches. They are both
16KB large, use direct mapping and have line size of 32B.
The second level contains a unified cache, 2MB large, uses
set-associative mapping with 4 lines per set, and have line size
of 128B. All the cache memories use write-back policy. The
processor clock frequency is 3.2 GHz.

The simulated memory has the most recent characteristics:
two 128 data line ranks of 1Gb DDR3 SDRAM devices, 8
banks/chip, 8K rows/bank, row capacity is 1K×2B, Trp, Tra,
Tca are 40 processor clock cycles each.

We have simulated executions of 6 benchmark programs
from the SPEC95 suite: cc1, compress, ijpeg, li, m88ksim,
and perl [4].

V. RESULTS

As a start, we have measured the same parameters as when

using DDR SDRAM in our previous papers [5, 6, 7]: open
row hit probability, number of accesses with zero live times,
number of accesses with nonzero live times, and average
values for access interval time, live time and dead time,
measured in processor clock cycles. We wanted to see if
DDR3 SDRAM would also show performance improvements
when using predictors, and this can be predicted from the
above parameters. The results are shown in Table 1. It can be
seen that in benchmark programs with small open row hit
probabilities (cc1, ijpeg, perl) the number of zero live times is
much greater than the number of nonzero live times, which is
reasonable. In benchmarks with large open row hit
probabilities (compress, m88ksim, li) there are much more
nonzero live times than zero live times. It can also be noticed
that in all 6 cases, the average value of access interval time is
several times smaller than the average value of dead time.
These results are pretty similar to those for DDR SDRAM,
which suggests that both Zero-live-time predictor and Dead-
time predictor would yield latency decrease, and an efficient
Close-page predictor opens a chance for having a good Open-
page predictor, too.

TABLE I

MEASURED PARAMETERS OF BENCHMARK PROGRAMS

Benchmark compr. m88. li
Open row hit probability 0.91 0.89 0.80
Zero live times 53 126 64
Non zero live times 342 497 180
Access interval 1451 150798 61623
Live time 8816 1469739 343359
Dead time 33233 8355280 18244638

Benchmark cc1 ijpeg perl
Open row hit probability 0.37 0.33 0.07
Zero live times 57649 28942 1184977
Non zero live times 14318 1822 38743
Access interval 25403 13796 19740
Live time 75564 113631 49376
Dead time 309924 144892 28562

Table 2 shows the prediction accuracies of the three

predictors: Zero-live-time (ZLT), Dead-time (DT) and Open-
page (OP). The accuracies of the Dead-time predictor are
solid, and as expected. The accuracies of the Open-page
predictor are pretty good, with the exception of li. The
accuracies of the Zero-live-time predictor for the three
benchmark programs with small open row hit probabilities
(cc1, ijpeg, perl) are excellent, and the accuracies of the same
predictor for the three benchmark programs with large open
row hit probabilities (compress, m88ksim, li) are pretty bad.
However, these bad prediction accuracies can be deceptive.
First of all, in these 3 benchmark programs there are very little
situations with zero live times (53, 126, and 64) so high

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

465

accuracies are difficult to obtain. Second, when having such
small numbers, one should look not just for the prediction
accuracies themselves, but for the number of total hits and
misses, too. These numbers of total hits/misses for the Zero-
live-time predictor are given in Table 3. It can be seen in this
table that the total numbers of the zero live time
mispredictions are negligible (3, 9, and 2). From that we can
conclude that the Zero-live-time predictor, for these three
benchmark programs, although having rather low prediction
accurices, will not have a significant negative influence on
DRAM latency.

TABLE II

PREDICTION ACCURACIES OF THE PREDICTORS

Benchmark comp. m88. li cc1 ijpeg perl
ZLT pred. 0 0.25 0.33 0.83 0.98 0.97
DT pred. 0.50 0.68 0.58 0.65 0.55 0.81
OP pred. 0.83 0.59 0.21 0.65 0.82 0.88

TABLE III

PREDICTION HITS/MISSES OF THE ZERO-LIVE TIME PREDICTOR

Benchmark comp. m88. li cc1 ijpeg perl
ZLT hits 0 3 1 49164 24554 1151
ZLT misses 3 9 2 10252 408 33
(Numbers for perl in Table III are given in thousands.)

0

20

40

60

80

100

120

com m88 li cc1 ijpeg perl

OpenRow
Predictors

Fig. 2. Average DRAM latencies in processor clock cycles

Figure 2 shows the average DRAM latencies, in processor

clock cycles, for the Open Row Policy and the hybrid policy
which uses the three predictors. It can be seen that in all the
cases the predictors either gain improvements or does not
spoil the latency. In the three benchmark programs with good
open row hit probabilities (compress, m88ksim, li) the
improvements are negligible. The fact that there are no
exacerbations in these cases can be considered a success. It is
very difficult to obtain improvements in these programs, since
improvements are possible only when the opened row is
changed, and this happens very rarely in these programs. This
can be corroborated with the fact that the theoretical latency
minimum that can be obtained is Tca, which is 40 cycles, and
it can be seen that Open Row Policy itself gives latencies of
about 45-55 cycles. In programs with small open row hit
probabilities (cc1, ijpeg, perl) there are visible improvements

when using the predictors. The latency decrements for these
benchmark programs are 18% for cc1, 36% for ijpeg and even
42% for perl. Another thing should be pointed out. The Close
Row Policy gives rather predictable DRAM latencies of
Tra+Tca. So for all the benchmark programs, the latencies
when using the Close Row Policy should be around 80 cycles.
If we compare this with the obtained DRAM latencies when
using the three predictors, it can be seen that for all 6
programs the predictors give better results than both the Open
Row and the Close Row Policy, which was our main goal.

VI. CONCLUSION

In this paper we have considered performances of

contemporary DDR3 SDRAM that uses two predictors which
predict when to close the opened DRAM row, and one
predictor which predicts the next row that should be opened.
The considered solution gives performance improvements,
both compared to Open Row and Close Row policy for all the
used benchmark programs. An implementation of such a
solution could demand proper changes in the DRAM
controller. The price increase of such a controller
accompanies the tendencies toward more complex DRAM
controllers, and could be easily accepted in the near future.

REFERENCES

[1] Z. Hu, S. Kaxiras, M. Martonosi, “Timekeeping in the

Memory System: Predicting and Optimizing Memory
Behavior”, The 2003 IEEE International Solid_state
Circuits Conference (ISSCC 2003), February 2003.

[2] A. Lai, C. Fide, B. Falsafi, “Dead-Block Prediction and
Dead-Block Correlating Prefetchers”, Proc. 28th ISCA,
June 2001, pp. 144-154.

[3] Z. Zhang, Z. Zhu, X. Zhang “A permutation-based page
interleaving scheme to reduce row-buffer conflicts and
exploit data locality”, Proc. 33rd AIS on
Microarchitecture, (Micro-33), Monterey, Calif. 2000.

[4] V. Stankovic, N. Milenkovic, “Access Latency
Reduction in Contemporary DRAM Memories”, Facta
Universitatis, series: Electronics and Energetics, Vol.
17, No. 1, April 2004, pp. 81-97.

[5] V. Stankovic, N. Milenkovic, “DRAM Controller with a
Simple Predictor”, ICEST 2005, Nis, June 29 - July 1,
2005, Vol. 2, pp. 449-452.

[6] V. Stankovic, N. Milenkovic, “DRAM Controller with a
Close-Page Predictor”, Eurocon 2005, Belgrade,
November 2005, pp. 693-696.

[7] V. Stankovic, N. Milenkovic, “DRAM Controller with a
Complete Predictor”, ETRAN 2006, June 2006, Vol. III,
pp. 34-37.

[8] D. Burger, T. M. Austin, “The SimpleScalar Tool Set,
Version 2.0”, University of Wisconsin-Madison
Computer Sciences Department Technical Report
#1342, June 1997.

[9] Micron 1Gb DDR3 SDRAM MT41J128M8 Data Sheet,
http://www.micron.com/products/dram/ddr3/

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

466

