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Abstract – In the arsenal of resources for computer memory 

system performance improvement, predictors have gained an 
increasing role in the past years. They enable hiding the latencies 
when accessing cache or main memory. In our previous work we 
have shown how average latency of DRAM memories can be 
decreased using various predictors. In three our papers we have 
considered three such predictors - a Dead-time predictor, a Zero-
live-time predictor, and an Open-page predictor. All these 
predictors were used in simulators that simulate DDR SDRAM 
memory. In this paper we have integrated all the predictors and 
added them to a simulator that simulates a contemporary DDR3 
SDRAM memory, written by ourselves. The results confirm the 
efficiency in using predictors. 
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I. INTRODUCTION 
 
A desire for better potential utilization of processors, which 

are becoming faster and faster, demands a memory system 
with similar performances. A critical ring in the hierarchically 
organized memory system is the main memory, implemented 
with chips of dynamic memory (DRAM – Dynamic Random 
Access Memory). In order to achieve as large bandwidth as 
possible, the chips of contemporary DRAM memories are 
organized with several independent memory banks, allow 
memory accesses pipelining, and buffer the data from the last 
activated row in each bank. Although increasing the memory 
bandwidth, these solutions make the contemporary DRAM 
memories performances dependable on memory access 
patterns. Contemporary DRAM memories are not really 
random access memories, characterized with identical access 
times to all locations in them. They are actually three-
dimensional memories, with banks, rows, and columns as 
dimensions. DRAM data access with row opening demands 
the following time: Tacc = Trp+Tra+Tca, where Trp is row 
precharge time, Tra is row activate/access time, and Tca is 
column access time. 

Using of read and write commands with autoprecharge 
eliminates the precharge time when the next access occurs, 
reducing the access time to Tra+Tca. Data accesses into 
already opened rows eliminate the precharge time and row 
access time, reducing the access time to Tca. The result is that 
consecutive accesses to different rows into single memory 
bank have larger latencies than consecutive accesses into the 
same row. Performances maximization of DRAM memories 
demands minimization of participation of precharges and rows 
openings. 

This makes that we can influence DRAM memory latency 
by controlling the data placement into banks and rows. This is 

the basis of papers in which address remappings are 
considered, which transform memory addresses into banks, 
rows and columns that optimize DRAM performances for 
certain memory access patterns [3, 4]. 

DRAM memory latency can be decreased if the opened row 
is closed before occurring of the next data access directed to 
the same bank, but to different row. In that way the precharge 
time Trp is being hidden, so the latency is practically reduced 
to Tacc = Tra+Tca. The latency could be additionally reduced 
to Tacc = Tca, by hiding the row access time. This demands 
the next row that is going to be accessed, to be opened in 
advance. In-time closing of the opened row demands a 
prediction when to close the opened row. Opening in advance 
the next row to be accessed demands a prediction which row 
to open and when. 

Papers [1, 2] deal with possibilities to predict the moment 
when the data block in the cache memory is to be declared 
'dead' (i.e. unnecessary present in the cache, because it is not 
to be used in the near future) and when and which data block 
to fetch to the cache in advance. This inspired us to 
investigate the possibilities of applying some of those ideas on 
DRAM memory performance optimization. In this paper we 
have restrained on ideas from [1], which relate to applying 
metrics of characteristic time parameters of data blocks 
transferred to cache memory. Analogically, we have defined 
proper characteristic time parameters for DRAM memories. 
By simulation, we have concluded that DRAM memory 
accesses have some regularity that can be used for prediction 
when to close the opened row, and which is the next row to be 
opened. Based on those results, we have proposed three 
predictors. Two of them predict when to close the opened 
row, and the third one predicts the next row to be opened. In 
our previous papers [5, 6, 7] we have simulated using these 
predictors with a DDR SDRAM memory. In this paper we try 
using them on a contemporary DDR3 SDRAM memory. The 
simulator for this memory was written by ourselves. 

DDR3 SDRAM memories are the most advanced type of 
commodity SDRAM memories. They have several new 
features which enable improving the control of them and 
increasing their performances, mainly through higher 
bandwidth. DDR3 SDRAM devices support posted CAS 
commands, which allows a DDR3 SDRAM memory 
controller to treat a row activation command and a column 
access command as a unitary command pair to be issued in 
consecutive cycles. This is simpler then issuing two separate 
commands which must be properly controlled and timed, as in 
DDR SDRAM. In addition, DDR3 SDRAM devices of all 
capacities have at least 8 banks of independent DRAM arrays 
that increase the capacity of sens amplifiers as buffers with 
reduced access time. Also, DDR3 devices can work at clock 
frequency range from 300÷800 MHz, with transfer rates up to 
1600 MT/s. These changes influence more positively on 
bandwidth increase than on latency reduction defined by 
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characteristic time parameters Trp, Tra, Tca, what causes 
increase of latency relative participation in the complete time 
needed for a data block transfer. For example, a DDR3 
SDRAM Micron MT41J128M8 memory [9] has the following 
parameters: fcm = 800MHz, Tcm = 1.25ns, data transfer rate: 
1600MT/s, Trp = Tra = Tca = 12.5ns. For a Wdb=64B data 
block read to be performed, the DRAM module with 
Wm=64lines=8B, a single burst with a length of 
Lburst=Wdb/Wm=8 is needed. The time needed for sending 
such data block to the controller, in the best case is: 

Tca + Lburst x 1/2 x Tcm = 10Tcm + 4Tcm = 14Tcm, with 
a latency participation of 10/14 = 0.714, or 71.4%. 
In the worst case this time is Trp + Tra + Tca + Lburst x 1/2 x 
Tcm = 30Tcm+4Tcm=34Tcm, with a latency participation of 
30/34=0.882, or 88.2%. 

The paper is organized as follows. In section II the basic 
idea, and in section III the predictors’ design and 
implementation, are exposed. Section IV contains the used 
simulation model, and section V gives a review of the 
obtained results. Section VI is the conclusion. 

 
II. BASIC IDEA 

 
A classic DRAM controller uses two possible policies: 

Open Row and Close Row. When using the first one, the row 
is kept opened, which gives latency of Tca if the next DRAM 
access is directed to the opened row, and Trp+Tra+Tca, if the 
next DRAM access is directed to some other row. When using 
the second policy, a row is being closed after every access, so 
the latency is always the sum Tra+Tca. The first policy gives 
good results with programs that have good memory access 
locality, and the second one with programs whose DRAM 
accesses have random character. Our goal is to achieve a 
policy more efficient than the both policies for both types of 
programs. This can be achieved if the opened row is kept open 
for as long as there are accesses into it, and then closed after 
the last access into it. After that the next row to be opened 
should be predicted and opened in advance. 

Let us define the metrics from [1] related to DRAM. Live 
time is a time interval that elapses from opening the row in a 
bank until the last access into that row before its closing. 
Dead time is a time which elapses from the last access to an 
open row until the moment of its closing. Access interval is a 
time interval which elapses between two consecutive accesses 
to an open row in a bank. A live time of an open row is called 
a zero live time, if after its opening there are no further 
accesses to that row till its closing. 

In this paper we consider a DRAM controller with 2 
predictors: a Close-page predictor, and an Open-page 
predictor. First the Close-page predictor predicts when to 
close the currently opened DRAM row. After that, the Open-
page predictor predicts the next row to be opened. In case of 
accurate predictions the latency time is reduced to only Tca. 

The mentioned Close-page predictor consists of two 
predictors: a Zero-live-time predictor and a Dead-time 
predictor. The first predictor is used always when a new row 
is opened, and it predicts whether its live time will be a zero 
live time or not. If yes, that row is closed immediately after 
completing the DRAM access. If not, the row is kept opened 

and after that access, and during further accesses the Dead-
time predictor is used to predict whether that row has entered 
its dead time. If it has, the row is closed, if not it is kept open. 

In case of a prediction that closes the row (either by the 
Zero-live-time or by the Dead-time predictor) the Open-page 
predictor is activated. This predictor consists of two tables - 
Row History Table and Pattern History Table. Based on them, 
the next row to be opened is predicted, and then opened. 

In next section all the predictors are described in detail. 
 

III. PREDICTORS’ DESIGN AND IMPLEMENTATION 
 
The Zero-live-time predictor uses two bits for each row in 

the DRAM. Those two bits are used as a saturated counter, 
with values from 0 to 3. Every time a zero live time occurs the 
counter is incremented, except its previous value was 3. Every 
time a nonzero live time occurs the counter is decremented, 
except its previous value was 0. When predicting, it is 
predicted that the live time will be a zero live time if the 
counter’s value is 2 or 3, i.e. nonzero live time if the counter’s 
value is 0 or 1. The starting counter’s value is 0. 

Implementation of this predictor is simple. It may be in a 
form of a SRAM memory with suitable organization 
integrated into the DRAM controller, since number of rows in 
the system may have large values. For example, a DDR3 
DRAM chip that has 8 banks with 8K rows each, demands 
128Kb or 16KB. Changing the values of the counter 
(incrementing, decrementing, resetting) is done by read-
modify-writes. When predicting, a read is performed, and 
depending on the value being read, the controller will issue 
commands with autoprecharge, or not. 

The Dead-time predictor is based on access interval time 
values. Our simulation results showed that the average dead 
time is several times larger than the average access interval 
time, so that fact is used for dead time prediction. When a 
value that is the last access interval time, multiplied by 2, 
elapses, it is predicted that the row has entered its dead time. 
So the only value that is being taken care of is the last access 
interval time. We used one register for storing the access 
interval time for each bank in the system. 

The implementation of the Dead-time predictor demands 
the DRAM controller to have one counter for each bank (to 
take care of the elapsed time since the last access), one 
register for each bank, for storing the last access interval 
value, and one comparator for each bank (for comparing the 
access interval register value with the counter). In order to 
minimize the counters' length, they could be triggered with a 
signal derived by dividing the DRAM’s clock. A simple shift 
operation by 1 position over the access interval register would 
be needed for defining the boundary value. By comparing this 
value with the counter the controller would decide whether to 
issue a precharge command or not. A controller that 
implements Open Row Policy already has a register for each 
bank for storing the last open row index, and a comparator for 
comparing the current access row index with that register. So 
the hardware added to a DRAM controller which implements 
the Dead-time predictor would have similar complexity as the 
mentioned implementation of Open Row Policy. 
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The structure of the Open-page predictor is presented in 

Figure 1. It consists of two tables – Row History Table 
(RHT), and Pattern History Table (PHT). RHT stores the last 
k rows that were activated in each of the banks, and PHT 
contains the predictions. PHT has m ≤ n items, where n is 
number of bank rows. Each item contains j two-part fields: 
row and next predicted row (rk and rnxt). PHT access index is 
obtained as t least significant bits of the sum (trancated 
addition) of the last k row indeces from the proper item for 
that bank in RHT, so m=2t. 

 
Fig. 1. Structure of the Open-page predictor 

 
Implementation of the Open-page predictor would demand 

g⋅b⋅k⋅⎡log2n⎤ bits for RHT (g is the number of DRAM chip 
ranks, b is the number of banks per rank) and m⋅j⋅2⋅⎡log2n⎤ 
bits for PHT. Also, one t-bit adder and a multiplexer of type 
(k,1)×t are needed, for a control block implemented as a finite 
state machine. For the adopted DRAM structure of 2GB with 
k=4, m=4096 and j=2, 832B are needed for RHT and 26KB 
for PHT. 

 
IV. SYSTEM SIMULATION MODEL 

 
For simulation we have used the program Sim-Outorder 

from the Simplescalar Tool Set [8]. We have integrated this 
simulator with a program that simulates DDR3 SDRAM 
memory, written by ourselves. This integrated simulator 
performs an execution-driven simulation, which is much more 
accurate than trace-driven simulations. The characteristics of 
the simulated processor are: a superscalar processor that 
issues at most 4 instructions on every clock cycle and supports 
out of order instruction execution, uses a two-level branch 
predictor, and has two levels of cache memories. The first one 
contains separate instruction and data caches. They are both 
16KB large, use direct mapping and have line size of 32B. 
The second level contains a unified cache, 2MB large, uses 
set-associative mapping with 4 lines per set, and have line size 
of 128B. All the cache memories use write-back policy. The 
processor clock frequency is 3.2 GHz. 

The simulated memory has the most recent characteristics: 
two 128 data line ranks of 1Gb DDR3 SDRAM devices, 8 
banks/chip, 8K rows/bank, row capacity is 1K×2B, Trp, Tra, 
Tca are 40 processor clock cycles each. 

We have simulated executions of 6 benchmark programs 
from the SPEC95 suite: cc1, compress, ijpeg, li, m88ksim, 
and perl [4]. 

 
V. RESULTS 

 
As a start, we have measured the same parameters as when 

using DDR SDRAM in our previous papers [5, 6, 7]: open 
row hit probability, number of accesses with zero live times, 
number of accesses with nonzero live times, and average 
values for access interval time, live time and dead time, 
measured in processor clock cycles. We wanted to see if 
DDR3 SDRAM would also show performance improvements 
when using predictors, and this can be predicted from the 
above parameters. The results are shown in Table 1. It can be 
seen that in benchmark programs with small open row hit 
probabilities (cc1, ijpeg, perl) the number of zero live times is 
much greater than the number of nonzero live times, which is 
reasonable. In benchmarks with large open row hit 
probabilities (compress, m88ksim, li) there are much more 
nonzero live times than zero live times. It can also be noticed 
that in all 6 cases, the average value of access interval time is 
several times smaller than the average value of dead time. 
These results are pretty similar to those for DDR SDRAM, 
which suggests that both Zero-live-time predictor and Dead-
time predictor would yield latency decrease, and an efficient 
Close-page predictor opens a chance for having a good Open-
page predictor, too. 

 
TABLE I 

MEASURED PARAMETERS OF BENCHMARK PROGRAMS 
 

Benchmark compr. m88. li 
Open row hit probability 0.91 0.89 0.80
Zero live times 53 126 64
Non zero live times 342 497 180
Access interval 1451 150798 61623
Live time 8816 1469739 343359
Dead time 33233 8355280 18244638

 
Benchmark cc1 ijpeg perl 
Open row hit probability 0.37 0.33 0.07
Zero live times 57649 28942 1184977
Non zero live times 14318 1822 38743
Access interval 25403 13796 19740
Live time 75564 113631 49376
Dead time 309924 144892 28562

 
Table 2 shows the prediction accuracies of the three 

predictors: Zero-live-time (ZLT), Dead-time (DT) and Open-
page (OP). The accuracies of the Dead-time predictor are 
solid, and as expected. The accuracies of the Open-page 
predictor are pretty good, with the exception of li. The 
accuracies of the Zero-live-time predictor for the three 
benchmark programs with small open row hit probabilities 
(cc1, ijpeg, perl) are excellent, and the accuracies of the same 
predictor for the three benchmark programs with large open 
row hit probabilities (compress, m88ksim, li) are pretty bad. 
However, these bad prediction accuracies can be deceptive. 
First of all, in these 3 benchmark programs there are very little 
situations with zero live times (53, 126, and 64) so high 
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accuracies are difficult to obtain. Second, when having such 
small numbers, one should look not just for the prediction 
accuracies themselves, but for the number of total hits and 
misses, too. These numbers of total hits/misses for the Zero-
live-time predictor are given in Table 3. It can be seen in this 
table that the total numbers of the zero live time 
mispredictions are negligible (3, 9, and 2). From that we can 
conclude that the Zero-live-time predictor, for these three 
benchmark programs, although having rather low prediction 
accurices, will not have a significant negative influence on 
DRAM latency. 

 
TABLE II 

PREDICTION ACCURACIES OF THE PREDICTORS 
 

Benchmark comp. m88. li cc1 ijpeg perl 
ZLT pred. 0 0.25 0.33 0.83 0.98 0.97
DT pred. 0.50 0.68 0.58 0.65 0.55 0.81
OP pred. 0.83 0.59 0.21 0.65 0.82 0.88

 
TABLE III 

PREDICTION HITS/MISSES OF THE ZERO-LIVE TIME PREDICTOR 
 

Benchmark comp. m88. li cc1 ijpeg perl 
ZLT hits 0 3 1 49164 24554 1151
ZLT misses 3 9 2 10252 408 33
(Numbers for perl in Table III are given in thousands.) 
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Fig. 2. Average DRAM latencies in processor clock cycles 
 
Figure 2 shows the average DRAM latencies, in processor 

clock cycles, for the Open Row Policy and the hybrid policy 
which uses the three predictors. It can be seen that in all the 
cases the predictors either gain improvements or does not 
spoil the latency. In the three benchmark programs with good 
open row hit probabilities (compress, m88ksim, li) the 
improvements are negligible. The fact that there are no 
exacerbations in these cases can be considered a success. It is 
very difficult to obtain improvements in these programs, since 
improvements are possible only when the opened row is 
changed, and this happens very rarely in these programs. This 
can be corroborated with the fact that the theoretical latency 
minimum that can be obtained is Tca, which is 40 cycles, and 
it can be seen that Open Row Policy itself gives latencies of 
about 45-55 cycles. In programs with small open row hit 
probabilities (cc1, ijpeg, perl) there are visible improvements 

when using the predictors. The latency decrements for these 
benchmark programs are 18% for cc1, 36% for ijpeg and even 
42% for perl. Another thing should be pointed out. The Close 
Row Policy gives rather predictable DRAM latencies of 
Tra+Tca. So for all the benchmark programs, the latencies 
when using the Close Row Policy should be around 80 cycles. 
If we compare this with the obtained DRAM latencies when 
using the three predictors, it can be seen that for all 6 
programs the predictors give better results than both the Open 
Row and the Close Row Policy, which was our main goal. 

 
VI. CONCLUSION 

 
In this paper we have considered performances of 

contemporary DDR3 SDRAM that uses two predictors which 
predict when to close the opened DRAM row, and one 
predictor which predicts the next row that should be opened. 
The considered solution gives performance improvements, 
both compared to Open Row and Close Row policy for all the 
used benchmark programs. An implementation of such a 
solution could demand proper changes in the DRAM 
controller. The price increase of such a controller 
accompanies the tendencies toward more complex DRAM 
controllers, and could be easily accepted in the near future. 
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