
 

 

Using Queued State Machines for Data Acquisition 
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Abstract – Аn approach for design development and 
implementation of data acquisitioning systems controlled by 
LabVIEW queued state machine architecture is suggested in this 
paper. The building blocks and functionality of such innovative 
type of state machines are described. A design steps based on 
unified modeling language are summarized, considered and 
introduced. In order to proof usability of suggested approach, in 
the end of the paper results achieved by developed temperature 
monitoring system are appended.  
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I. INTRODUCTION 

By definition a finite state machine is model of behavior 
composed of finite number of states, transitions between those 
states, and actions. The classical state machine is made up of 
entry, exit, input, and transition actions. This abstract machine 
defines a finite set of conditions of existence, a set of 
behaviors or actions performed in each of those states, and a 
set of events which cause changes in states according to a 
finite and well-defined rule set. State machines are the 
primary means within the Unified Modeling Language (UML) 
for capturing complex dynamic behavior. They are described 
by comprehensive set of notations named statecharts [2, 3].  

In addition classical state machines are the most highly 
touted LabVIEW design patterns. There are many variations, 
most of which consist of a Case structure within a While Loop, 
with a Shift register or messaging construct wired to the case 
selector terminal. Each case of the Case structure contains a 
subdiagram corresponding to a state of the application. The case 
selector is an integer, string, or enumerated data type 
identifying the states. The Shift register or messaging construct 
passes the next state selection from a previous case to the 
selector terminal in the next loop iteration. In a typical 
application, the state selection is determined by an event on the 
user interface, by a step in a sequential test or measurement 
routine, or from the result of a previous state. 

The Classic State Machine is appropriate for programs and 
routines of low to medium complexity but is not flexible 
enough for complex virtual instruments (VI), top-level 
programs, and graphical user interfaces. Alternative state 
machine implementations that utilize queues and Event 
structures are more functional and efficient for these 
applications. 

Over the last three years, the queued state machine (QSM) 

has gained support and widespread use in large LabVIEW 
based applications in the developer community [1, 5]. QSM 
architecture, is one essential architecture that significantly 
facilitates programming advanced LabVIEW based projects. 
A common application for the QSM architecture is in 
programming applications that send commands for 
asynchronous processing in a parallel loop so that event cases 
can exit code execution quickly and avoid lockup. Another 
application is in multiple parallel virtual instruments 
programming such as in parallel data acquisition, alarm 
monitoring, and results analysis, where this method empowers 
any parallel application to send and receive commands and 
data across other parallel applications with no data loss. 

The intermediate to advanced nature of the objects that 
make up the queued state machines architecture, taking full 
advantage of this template requires detailed knowledge of the 
its various characteristic design aspects. Especially attention 
must be kept when in project are involved data acquisition 
(DAQ) drivers. This paper suggest, illustrates, and describes 
an approach to use the various elements of the QSM 
architecture to design and build up parallel running data 
acquisition application in LabVIEW environment. 

II. QUEUED STATE MACHINES 

A. A High Level Layout of QSM Architecture  

Generally, a queued state machine is a LabVIEW 
programming method that sends commands and other data 
from multiple source points, such as from user events and 
from one or more parallel processes, and gets these handled in 
one state machine process in the order in which they were 
added to the queue [1]. With such approach, a state can 
determine not only the next state to be performed, but a series 
of states that must be performed in order. The series of states 
that must be executed are placed in a queue. The states are 
removed from the queue one at a time and executed in the 
order they were inserted into the queue. 
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Fig. 1. High Level QSM Architecture 
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In figure 1 is shown the simplest high-level illustration of 

the QSM design. The base building blocks of the architecture 
are Event structure, Queues and data, While loop, Dequeuing 
element, Case structure, Error handling element and one or 
more parallel processes objects. Event structure and parallel 
processes objects are the multiple producer processes 
responsible for sourcing commands and data and adding them 
to the queue. The Dequeued element removes commands and 
data from the queue and acts on these in Case structure in the 
order added to the queue. The new element in this architecture 
introduced in [1] is that it uses a queue element data type 
consisting of a cluster that contains the enumerated type 
definition bundled together with a variant. The enumeration 
contains the desired state for the case selector as normal. The 
variant is used to pass data from one state to another, using 
the queue functions instead of shift registers. 

Another innovative feature suggested for the QSM 
architecture from reference [1] is the shift registered cluster 
data flow line that passes through all state machine cases. This 
flow line avails and allows update of parameters and variables, 
as needed, inside every state machine case. Unbundled-by-name 
utility is used to access parameters and variables and use the 
bundle-by-name utility to update the same.  

Programs (or SubVIs) that run in parallel with the main 
consumer process can be data communications VIs, data 
acquisition VIs, results analysis VIs, and much more. These 
parallel subVIs primarily behave as producer processes and 
access the queue reference by name, that is shared with the 
consumer process. This method of access to the queue 
reference precludes the need to wire the queue reference to 
SubVIs, which creates transparent routes of communication 
and simplifies the block diagram 

B. Benefits of QMS 

There are many benefits of the presented queued state 
machine architecture according classical state machines. From 
data acquisition point of view the more important are:  

• Parallel Process Enabler. This architecture establishes 
the use of queue references as data messaging pipelines that 
communicates information between parallel processes in timely 
manner. This type of communication solves one of the serious 
challenges in parallel process programming for data acquisition, 
alarm monitoring and results analysis. 

• Multiple Producer and Single Consumer Points. In this 
type of state machine, queue data elements can be added from 
various points in the code known as producer points. However, 
queue elements are taken out of the queue from only one 
destination point, called the consumer point. This consumer point 
is considered to be the owner of the queue reference. 

• Global Access to the Queue via the Queue Name. 
This means that the queue can be seen by other processes 
without the need of wiring the program components to a 
queue reference. Such approach creates transparent routes of 
communication and greatly simplifies the code. 

• Can be used Run Time Logic. QSM programs can 
implement logic to change the latest command sequence by 
adding commands to the front of the queue or by emptying the 

queue to reset the program flow and add new commands 
thereafter. 

• Multi Consumer Queue References Creates a Network 
of Data Pathways. Parallel process which themselves use the 
QSM architecture create a network of communication pathways 
with multiple producer and consumer points. This allows one 
parallel process to control multiple parallel processes. 

III. QSM BASE DESIGN STEPS 

There are many references and manuals describing in 
details methods and steps to design classical state machines in 
unified manner [2, 3]. More of them are directed to textual 
object oriented programming languages. Concerning graphical 
languages can be mentioned LabVIEW Statechart Module [4]. 
With this module is possible to design LabVIEW applications 
with statechart diagrams, but it is relatively expensive and is 
not allowed for QSM. In this paper is introduced approach 
based on unified modeling language for design and develop 
data acquisition application based on QSM architecture. The 
presented approach consists from following steps.  

A. Build Statechart 

Statecharts are a methodology by which complex systems 
can be specified in an intuitive graphical manner. They enable 
complex relationships between concurrent states to be formed, 
through synchronization techniques and decomposition of 
states. This approach provides a high level of abstraction for 
designing applications using states, transitions, and events [3]. 
Statecharts are especially useful for designing a number of 
asynchronous parallel processes. As example in figure 2 is 
shown the statechart diagram based on UML notations. This 
diagram is created by authors in order to develop virtual 
system for temperature parameters investigation that is 
explained in next topics. 

B. Define Transitions and States 

After the statechart diagram is created the next step is to 
define various transitions, states and actions. The following 
special features must be considered: 

Each transition contains three component – trigger, guard 
and action. Trigger is events that cause transition, guard is 
logic that can prevent a transition and action is what happens 
when transition is established.  

Each state contains three types of action – entry, exit and 
static. Entry is what happens when data get in state, exit 
defines what happens when data leave, and static describe 
what happens while data are there.  

When transition and states are defined statechart execution 
must be considered and verified. First is evaluated the trigger 
and guard logic for the transitions leaving the current state.  

On first valid transition is executed the exit action for the 
current state, follow execution of the transition action, and 
finally is executed the entry action for all states being 
transitioned on. If no transitions are valid first is evaluated the 
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trigger and guard logic for all static reactions configured for 
the current state. The last is executed the action code for all 
valid reaction. 
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Fig. 2. UML statechart for virtual measurement system 

C. Create typedef enumerated constant according defined 
states 

After transition and states are defined the LabVIEW code can 
be developed. For beginning it is needed to create typedef 
enumerated constants that corresponded to each defined state. 
The typedef enumerated constant enlists chosen names of the 
state machine cases. Each time a command is added to the 
queue, the enum should be set to the machine’s state name 
which will handle or process the command. It is needed to 
ensure that the enum constant is a copy of a typedef-based 
custom control so to give opportunity to add or remove 
command items from the enum and make changes to all 
instances of the typedef constant throughout all LabVIEW code. 

D. Define and create Event structure and Queues sending 
commands and data 

Event structure has one or more diagrams, or event cases, 
exactly one of which executes when the structure executes. 
The Event structure waits until an event happens on the front 
panel, then executes the appropriate case to handle that event. 
The structure is responsible for user defined events generated 
from user interface. 

The LabVIEW queue implementation creates a queue 
reference of given name, using functions from LabVIEW’s 
queue palette. Subsequent and repeated implementation of this 
same code will grab an existing queue reference of the 

specified name. This is typically done to give access of queue 
reference to subVIs which also avoids the need to wire a 
queue reference to the subVI. 

E. Configure data acquisition task  

A data acquisition task is a collection of one or more virtual 
channels with scaling, timing, triggering and other properties. 
Many of the built-in measurement and automation explorer 
(MAX) constructs are well suited for implementing many 
common data acquisition programming tasks, such as task 
creation, input or output operations and task destruction. 

Special attention must be kept with DAQ tasks when an 
asynchronous parallel processes are developed. If the tasks is 
defined as continuous it is not possible to stop and clear it in 
order to give up DAQ resources for other process. 

F. Develop supporting  LabVIEW code 

After the designed transitions and states are developed and 
verified, to complete the LabVIEW programming code or so 
called block diagram, an additional functions and blocks for 
data manipulation must be created. This process is strongly 
dependent upon concrete application and programmer’s 
experience [5].  

IV. INVESTIGATION OF TEMPERATURE 
PARAMETERS USING QSM  

In order to verify suggested approach for data acquisitioning 
using QSM, a virtual system for investigation of resistance 
versus temperature dependency of various materials was 
developed. The hardware organization of the system is shown 
in fig. 3. The idea is when the temperature chamber is turned on 
DAQ board begin to monitor continuously the temperature in 
the chamber with analog input 0 (AI0). As temperature sensor 
the integrated one is used (AD22100). The user define desired 
temperature values for which the resistance of the device under 
test (DUT) must be measured. When the current temperature 
reach specified one the DAQ task is changed, channel 1 (AI1) 
measure resistance only once and give up resource to 
temperature monitoring again. With such a way the measured 
data is reduced only to this needed for investigation. 
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Fig. 3. Hardware organization of the developed system 
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Fig. 4. The LabVIEW block diagram of the resistance measurement process 

 
In addition when measurement data is acquired for given 

temperature this temperature is removed from the array that 
guarantee only one resistance measurement for each 
temperature point. The transitions and states of described 
process is illustrated in UML diagram from fig. 2. As can be 
seen there are two asynchronous data acquisition processes 
that exchange commands and data using queues. The 
LabVIEW block diagram of the resistance measurement 
process (Temperature main superstate in left on fig.2) is 
shown in fig. 4. As can be seen there are various elements 
from the QSM architecture. The block diagram is relatively 
simple, and can be easily used as a template for larger scale 
user interface design. Front panels of both processes are 
shown in fig 5. The results from investigation of 
10 kΩ thermistor (NTC) is shown in order to illustrate 
usability of the created system.  

V. CONCLUSION 

Design, development and implementation of virtual 
measurement system based on queued state machine 
architecture is presented in this paper. The described approach 
can be used for various applications where paralleled 
asynchronous data acquisition processes are required.  
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Fig. 5. Front panels of virtual system for investigation of resistance 

versus temperature dependency 
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