

Using Queued State Machines for Data Acquisition
Georgi Nikolov1 and Boyanka Nikolova2

Abstract – Аn approach for design development and
implementation of data acquisitioning systems controlled by
LabVIEW queued state machine architecture is suggested in this
paper. The building blocks and functionality of such innovative
type of state machines are described. A design steps based on
unified modeling language are summarized, considered and
introduced. In order to proof usability of suggested approach, in
the end of the paper results achieved by developed temperature
monitoring system are appended.

Keywords – Queued state machine, Virtual instrumentation,
Paralleled DAQ processing, LabVIEW programming.

I. INTRODUCTION

By definition a finite state machine is model of behavior
composed of finite number of states, transitions between those
states, and actions. The classical state machine is made up of
entry, exit, input, and transition actions. This abstract machine
defines a finite set of conditions of existence, a set of
behaviors or actions performed in each of those states, and a
set of events which cause changes in states according to a
finite and well-defined rule set. State machines are the
primary means within the Unified Modeling Language (UML)
for capturing complex dynamic behavior. They are described
by comprehensive set of notations named statecharts [2, 3].

In addition classical state machines are the most highly
touted LabVIEW design patterns. There are many variations,
most of which consist of a Case structure within a While Loop,
with a Shift register or messaging construct wired to the case
selector terminal. Each case of the Case structure contains a
subdiagram corresponding to a state of the application. The case
selector is an integer, string, or enumerated data type
identifying the states. The Shift register or messaging construct
passes the next state selection from a previous case to the
selector terminal in the next loop iteration. In a typical
application, the state selection is determined by an event on the
user interface, by a step in a sequential test or measurement
routine, or from the result of a previous state.

The Classic State Machine is appropriate for programs and
routines of low to medium complexity but is not flexible
enough for complex virtual instruments (VI), top-level
programs, and graphical user interfaces. Alternative state
machine implementations that utilize queues and Event
structures are more functional and efficient for these
applications.

Over the last three years, the queued state machine (QSM)

has gained support and widespread use in large LabVIEW
based applications in the developer community [1, 5]. QSM
architecture, is one essential architecture that significantly
facilitates programming advanced LabVIEW based projects.
A common application for the QSM architecture is in
programming applications that send commands for
asynchronous processing in a parallel loop so that event cases
can exit code execution quickly and avoid lockup. Another
application is in multiple parallel virtual instruments
programming such as in parallel data acquisition, alarm
monitoring, and results analysis, where this method empowers
any parallel application to send and receive commands and
data across other parallel applications with no data loss.

The intermediate to advanced nature of the objects that
make up the queued state machines architecture, taking full
advantage of this template requires detailed knowledge of the
its various characteristic design aspects. Especially attention
must be kept when in project are involved data acquisition
(DAQ) drivers. This paper suggest, illustrates, and describes
an approach to use the various elements of the QSM
architecture to design and build up parallel running data
acquisition application in LabVIEW environment.

II. QUEUED STATE MACHINES

A. A High Level Layout of QSM Architecture

Generally, a queued state machine is a LabVIEW
programming method that sends commands and other data
from multiple source points, such as from user events and
from one or more parallel processes, and gets these handled in
one state machine process in the order in which they were
added to the queue [1]. With such approach, a state can
determine not only the next state to be performed, but a series
of states that must be performed in order. The series of states
that must be executed are placed in a queue. The states are
removed from the queue one at a time and executed in the
order they were inserted into the queue.

Event Structure

Parallel
Process A

While Loop

Case
Structure
(States)

De
Queue Error

Detec-
tion

Parallel
Process B

Parallel
Process N

Queues and data

Clustered data

Fig. 1. High Level QSM Architecture

1Georgi Nikolov is with the Faculty of Electronics and
Technologies at Technical University of Sofia, 8 Kl. Ohridski Blvd,
Sofia 1000, Bulgaria, E-mail: gnikolov@tu-sofia.bg.

2Boyanka Nikolova is with the Faculty of Telecommunications at
Technical University of Sofia, 8 Kl. Ohridski Blvd, Sofia 1000,
Bulgaria. E-mail: bnikol@tu-sofia.bg.

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

571

In figure 1 is shown the simplest high-level illustration of

the QSM design. The base building blocks of the architecture
are Event structure, Queues and data, While loop, Dequeuing
element, Case structure, Error handling element and one or
more parallel processes objects. Event structure and parallel
processes objects are the multiple producer processes
responsible for sourcing commands and data and adding them
to the queue. The Dequeued element removes commands and
data from the queue and acts on these in Case structure in the
order added to the queue. The new element in this architecture
introduced in [1] is that it uses a queue element data type
consisting of a cluster that contains the enumerated type
definition bundled together with a variant. The enumeration
contains the desired state for the case selector as normal. The
variant is used to pass data from one state to another, using
the queue functions instead of shift registers.

Another innovative feature suggested for the QSM
architecture from reference [1] is the shift registered cluster
data flow line that passes through all state machine cases. This
flow line avails and allows update of parameters and variables,
as needed, inside every state machine case. Unbundled-by-name
utility is used to access parameters and variables and use the
bundle-by-name utility to update the same.

Programs (or SubVIs) that run in parallel with the main
consumer process can be data communications VIs, data
acquisition VIs, results analysis VIs, and much more. These
parallel subVIs primarily behave as producer processes and
access the queue reference by name, that is shared with the
consumer process. This method of access to the queue
reference precludes the need to wire the queue reference to
SubVIs, which creates transparent routes of communication
and simplifies the block diagram

B. Benefits of QMS

There are many benefits of the presented queued state
machine architecture according classical state machines. From
data acquisition point of view the more important are:

• Parallel Process Enabler. This architecture establishes
the use of queue references as data messaging pipelines that
communicates information between parallel processes in timely
manner. This type of communication solves one of the serious
challenges in parallel process programming for data acquisition,
alarm monitoring and results analysis.

• Multiple Producer and Single Consumer Points. In this
type of state machine, queue data elements can be added from
various points in the code known as producer points. However,
queue elements are taken out of the queue from only one
destination point, called the consumer point. This consumer point
is considered to be the owner of the queue reference.

• Global Access to the Queue via the Queue Name.
This means that the queue can be seen by other processes
without the need of wiring the program components to a
queue reference. Such approach creates transparent routes of
communication and greatly simplifies the code.

• Can be used Run Time Logic. QSM programs can
implement logic to change the latest command sequence by
adding commands to the front of the queue or by emptying the

queue to reset the program flow and add new commands
thereafter.

• Multi Consumer Queue References Creates a Network
of Data Pathways. Parallel process which themselves use the
QSM architecture create a network of communication pathways
with multiple producer and consumer points. This allows one
parallel process to control multiple parallel processes.

III. QSM BASE DESIGN STEPS

There are many references and manuals describing in
details methods and steps to design classical state machines in
unified manner [2, 3]. More of them are directed to textual
object oriented programming languages. Concerning graphical
languages can be mentioned LabVIEW Statechart Module [4].
With this module is possible to design LabVIEW applications
with statechart diagrams, but it is relatively expensive and is
not allowed for QSM. In this paper is introduced approach
based on unified modeling language for design and develop
data acquisition application based on QSM architecture. The
presented approach consists from following steps.

A. Build Statechart

Statecharts are a methodology by which complex systems
can be specified in an intuitive graphical manner. They enable
complex relationships between concurrent states to be formed,
through synchronization techniques and decomposition of
states. This approach provides a high level of abstraction for
designing applications using states, transitions, and events [3].
Statecharts are especially useful for designing a number of
asynchronous parallel processes. As example in figure 2 is
shown the statechart diagram based on UML notations. This
diagram is created by authors in order to develop virtual
system for temperature parameters investigation that is
explained in next topics.

B. Define Transitions and States

After the statechart diagram is created the next step is to
define various transitions, states and actions. The following
special features must be considered:

Each transition contains three component – trigger, guard
and action. Trigger is events that cause transition, guard is
logic that can prevent a transition and action is what happens
when transition is established.

Each state contains three types of action – entry, exit and
static. Entry is what happens when data get in state, exit
defines what happens when data leave, and static describe
what happens while data are there.

When transition and states are defined statechart execution
must be considered and verified. First is evaluated the trigger
and guard logic for the transitions leaving the current state.

On first valid transition is executed the exit action for the
current state, follow execution of the transition action, and
finally is executed the entry action for all states being
transitioned on. If no transitions are valid first is evaluated the

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

572

trigger and guard logic for all static reactions configured for
the current state. The last is executed the action code for all
valid reaction.

T_Monito

ring
Temperat
ure Main

Initiate
Main

Idle

Initiate
T_Monitoring

Temperature
Monitoring

Sent Desired
Temperature

Se
nt

[T
RU

E]
/O

pn
 D

lg

Receive Data

Sent Data [TRUE]

Is Equal?

N
o

Sent Measured
Temperature

Yes

Measure
Resistance, Plot and

Save Data

Sent/Clear T_monitoring Task

Error or
Stop

N
o

Yes

Error or
Stop

No

Yes

Wait for TaskClear Resistance
Task

Fig. 2. UML statechart for virtual measurement system

C. Create typedef enumerated constant according defined
states

After transition and states are defined the LabVIEW code can
be developed. For beginning it is needed to create typedef
enumerated constants that corresponded to each defined state.
The typedef enumerated constant enlists chosen names of the
state machine cases. Each time a command is added to the
queue, the enum should be set to the machine’s state name
which will handle or process the command. It is needed to
ensure that the enum constant is a copy of a typedef-based
custom control so to give opportunity to add or remove
command items from the enum and make changes to all
instances of the typedef constant throughout all LabVIEW code.

D. Define and create Event structure and Queues sending
commands and data

Event structure has one or more diagrams, or event cases,
exactly one of which executes when the structure executes.
The Event structure waits until an event happens on the front
panel, then executes the appropriate case to handle that event.
The structure is responsible for user defined events generated
from user interface.

The LabVIEW queue implementation creates a queue
reference of given name, using functions from LabVIEW’s
queue palette. Subsequent and repeated implementation of this
same code will grab an existing queue reference of the

specified name. This is typically done to give access of queue
reference to subVIs which also avoids the need to wire a
queue reference to the subVI.

E. Configure data acquisition task

A data acquisition task is a collection of one or more virtual
channels with scaling, timing, triggering and other properties.
Many of the built-in measurement and automation explorer
(MAX) constructs are well suited for implementing many
common data acquisition programming tasks, such as task
creation, input or output operations and task destruction.

Special attention must be kept with DAQ tasks when an
asynchronous parallel processes are developed. If the tasks is
defined as continuous it is not possible to stop and clear it in
order to give up DAQ resources for other process.

F. Develop supporting LabVIEW code

After the designed transitions and states are developed and
verified, to complete the LabVIEW programming code or so
called block diagram, an additional functions and blocks for
data manipulation must be created. This process is strongly
dependent upon concrete application and programmer’s
experience [5].

IV. INVESTIGATION OF TEMPERATURE
PARAMETERS USING QSM

In order to verify suggested approach for data acquisitioning
using QSM, a virtual system for investigation of resistance
versus temperature dependency of various materials was
developed. The hardware organization of the system is shown
in fig. 3. The idea is when the temperature chamber is turned on
DAQ board begin to monitor continuously the temperature in
the chamber with analog input 0 (AI0). As temperature sensor
the integrated one is used (AD22100). The user define desired
temperature values for which the resistance of the device under
test (DUT) must be measured. When the current temperature
reach specified one the DAQ task is changed, channel 1 (AI1)
measure resistance only once and give up resource to
temperature monitoring again. With such a way the measured
data is reduced only to this needed for investigation.

Temperature Chamber

Temperature
Sensor

DUT

USB DAQ

Current
Source

PC

AI0

AI1

AO1

Fig. 3. Hardware organization of the developed system

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

573

Fig. 4. The LabVIEW block diagram of the resistance measurement process

In addition when measurement data is acquired for given

temperature this temperature is removed from the array that
guarantee only one resistance measurement for each
temperature point. The transitions and states of described
process is illustrated in UML diagram from fig. 2. As can be
seen there are two asynchronous data acquisition processes
that exchange commands and data using queues. The
LabVIEW block diagram of the resistance measurement
process (Temperature main superstate in left on fig.2) is
shown in fig. 4. As can be seen there are various elements
from the QSM architecture. The block diagram is relatively
simple, and can be easily used as a template for larger scale
user interface design. Front panels of both processes are
shown in fig 5. The results from investigation of
10 kΩ thermistor (NTC) is shown in order to illustrate
usability of the created system.

V. CONCLUSION

Design, development and implementation of virtual
measurement system based on queued state machine
architecture is presented in this paper. The described approach
can be used for various applications where paralleled
asynchronous data acquisition processes are required.

ACKNOWLEDGEMENT

This investigation has been carried out in the framework of
the research projects № Д01-1251/18.12.07 and № 092 ни
044-03.

Fig. 5. Front panels of virtual system for investigation of resistance

versus temperature dependency

REFERENCES

[1] A. Lukindo, “LabVIEW Queued State Machine Architecture”,
Expression Flow, 2007, http://expressionflow.com/2007/10/01/.

[2] P. Stevens, Pooley, R., Using UML. Software Engineering with
Objects and Components, 2nd edition, Addison-Wesley, ISBN-
13: 978-32126-967-6, 2006.

[3] D. Drusinsky, Modeling and Verification Using UML
Statecharts, Elsevier Inc., ISBN 0-7506-7949-2, 2006.

[4] National Instruments, “Build a Hybrid Control System with NI
LabVIEW Statechart and Control Design and Simulation
Tools”, 2006.

[5] P. A. Blume, The LabVIEW Style Book, Prentice Hall, ISBN 0-
13-145835-3, 2007.

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

574

