
 Fault-Injection Tool for Distributed Elevator System
Branislav D. Petrovic1, Goran S. Nikolic2

Abstract – In this paper, a Fault Injection Environment (FIE) for
distributed elevator system (DES) is presented. The FIE is
suitable to assess the correctness of the design and
implementation of the hardware and software mechanisms
existing in embedded microprocessor-based systems, and to
compute the fault coverage they provide. The paper describes
and analyzes different solutions for implementing the most
critical modules. In addition, a powerful technique for emulating
hardware faults is developed. Having in mind that our embedded
system is hierarchical type, very important segment is
communications. A safety-critical system needs fault-tolerant
communication between its components. This is especially
important for distributed real-time systems that are based on the
results of the communication. In addition to, having in mind that
the FIE implementation is used in lift processor of distributed
structure a number of experimental runs in relatively short time
can be executed. On the other hand, a number of faults were
injected in simulation model of prototype implementation and
system behaviour, in real life environment, is observed.

Keywords – Fault Injection Tools, Fault Tolerant System,
SWIFIT Model, Lift (Elevator) system.

I. INTRODUCTION

Modern technological systems rely heavily on sophisticated
control systems to meet increased safety and performance
requirements. This is particularly true in safety critical
applications, such as aircraft, spacecraft, nuclear power plants,
and chemical plants processing hazardous materials, where a
minor and often benign fault could potentially develop into
catastrophic events if left unattended for or incorrectly
responded to. To prevent fault-induced losses and to minimize
the potential risks, new control techniques and design
approaches need to be developed to cope with system
component malfunctions whilst maintaining the desirable
degree of overall system stability and performance levels. A
control system that possesses such a capability is often known
as a FTCS (Fault-Tolerant Control System). Fault tolerance is
the ability of a system to perform its function correctly even in
the presence of internal faults. The purpose of fault tolerance
is to increase the dependability of a system. A complementary
but separate approach to increasing dependability is fault
prevention. This consists of techniques, such as inspection,
whose intent is to eliminate the circumstances by which faults
arise. To increase system dependability we use in general
three techniques: fault avoidance, fault masking and fault
tolerance. [1]

1Branislav D. Petrovic is with the Faculty of Electronic

Engineering, University of Nis, Aleksandra Medvedeva 14,
18000 Nis, Serbia, E-mail: branislav.petrovic@elfak.ni.ac.rs

2Goran S. Nikolic is with the Faculty of Electronic
Engineering, University of Nis, Aleksandra Medvedeva 14,
18000 Nis, Serbia, E-mail: goran.nikolic@elfak.ni.ac.rs

The main idea of fault avoidance techniques is to prevent
fault occurrence. This is achieved by design reviews and
automation, part selection, screening, lowering power
consumption, software rejuvenation etc. Fault masking
techniques hide the faults and prevent occurrence of errors
using error correction codes or passive redundancy e.g. triple
modular redundancy with voting. Fault tolerance techniques
detect faults, identify them and perform appropriate recovery
(e.g. replacing a faulty model by a spare one).

One of the most used digital systems, today, is
microprocessor-based embedded systems. Fault tolerance
mechanisms, in this case, are introduced at the hardware and
software level. Debugging and verifying the correct design
and implementation of these mechanisms ask for effective
environments, and Fault Injection represents an acceptable
solution for their implementation.

Fault tolerance and reliability measures cannot be evaluated
using benchmark programs and standard test methodologies,
but only by observing the system behaviour when a fault
appears inside it. Since the MTBF (Mean Time Between
Failure) in a safety-critical system can be of the order of
years, fault occurrence has to be artificially accelerated in
order to observe the system behaviour under faults without
waiting for the natural appearance of actual faults.

On the other hand, study of failures and errors is an
important part in the evaluation of system reliability. To
understand the potential failures, there have been developed
experimental techniques that can be applied both to the
hardware and to the software. These techniques not only are
suitable during the phase of system analysis and design, but
also during their prototyping and manufacturing phases, in
other words during the whole of system life cycle.

II. FAULTS, ERRORS, FAILURE

A. Definition and Examples

Implicit in the definition of fault tolerance is the assumption
that there is a specification of what constitutes correct
behaviour. A failure occurs when an actual running system
deviates from this specified behaviour. The cause of a failure
is called an error. An error represents an invalid system state,
one that is not allowed by the system behaviour specification.
The error itself is the result of a defect in the system or fault.
In other words, a fault is the root cause of a failure. That
means that an error is merely the symptom of a fault. A fault
may not necessarily result in an error, but the same fault may
result in multiple errors. Similarly, a single error may lead to
multiple failures. [2].

A number of hazardous faults that can lead to accident are
obvious in plenty of elevators. To explain most common
faults in detail, let consider one standard traction elevator.

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

575

 Traction machines are driven by AC or DC electric motors.
The machines use gears to mechanically control movement of
elevator cars by "rolling" steel hoist ropes over a drive sheave
which is attached to a gearbox driven by a high speed motor.
These machines are generally the best option for basement or
overhead traction use for speeds up to 5 m/s. A brake is
mounted between the motor and drive sheave (or gearbox) to
hold the elevator stationary at a floor. This brake is usually an
external drum type and is actuated by spring force and held
open electrically; a power failure will cause the brake to hold
the elevator in position. In each case, cables are attached to a
hitch plate on top of the cab, and then looped over the drive
sheave to a counterweight attached to the opposite end of the
cables which reduces the amount of power needed to move
the cab. The counterweight is located in the hoist-way and
rides a separate rail system; as the car goes up, the
counterweight goes down, and vice versa. This action is
powered by the traction machine which is directed by the
controller, typically a relay logic or computerized device that
directs starting, acceleration, deceleration and stopping of the
elevator cab.

Let describe the first hazard. Suppose the situation: lift car
is at one of bottom floors and is about to start moving up. At
the moment of starting the brake is energized and motor is
powered on. If cabin is fully loaded, the start up current can
be of high intensity. In this case a fuse failure or contactor
failure can disconnect the motor from power supply, but brake
is still energized. Detection of power failure at the motor leads
is of great importance. Measuring of voltages is not sufficient
because of electromagnetic induction in motor windings. If
controller is not capable to detect the failure, cabin will go to
move uncontrolled, probably falling down to dampening
device. The situation obviously leads to accident injuries.

Second hazard is related to elevator doors opening to an
open shaft. If elevator door is opened but cabin is not on that
floor, the lift controller mast immediately stops the car
moving. If door opening sensor is shortened for some reasons,
the stopping function cannot be achieved. Besides, a door
opened with no cab on the floor is dangerous situation and
mast be obviously signalized.

Next hazard that can cause accident is erroneous
determination of the cabin position. In old fashion elevators,
the position of the car is determined by counting method.
Passing the cab near some kind of proximity sensor on every
floor a counting floor register in controller is incremented or
decremented. In the case of transient error or proximity sensor
malfunction, determination of the position is not possible.
New solutions of lift controllers that use some kind of
encoders are also prone to transient errors and power supply
interruption. Hence, accident situation can occur if an
outermost floor is missed.

All of above hazardous situations must be predicted lift
controller response proved. Using the FIT verification of
controller response can be achieved effectively.

B. Faults Classification

It is helpful to classify faults in a number of different ways,
as shown by the UML class diagram in Fig. 1.

Fig. 1.Different Classifications of Faults

Based on duration, faults can be classified as transient or

permanent. A transient fault will eventually disappear without
any apparent intervention, whereas a permanent one will
remain unless it is removed by some external agency. A
different way to classify faults is by their underlying cause.
Design faults are the result of design failures. Operational
faults, on the other hand, are faults that occur during the
lifetime of the system and are invariably due to physical
causes, such as processor failures or disk crashes. Finally,
based on how a failed component behaves once it has failed,
faults can be classified into the following categories: 1. Crash
faults -- the component either completely stops operating or
never returns to a valid state; 2. Omission faults -- the
component completely fails to perform its service; 3. Timing
faults -- the component does not complete its service on time;
4. Byzantine faults -- these are faults of an arbitrary nature.

C. Types of Redundancy a Fault Tolerance

All of fault tolerance is an exercise in exploiting and
managing redundancy. Redundancy is the property of having
more of a resource than is minimally necessary to do the job
at hand. As failures happen, redundancy is exploited to mask
or otherwise work around these failures, thus maintaining the
desired level of functionality. There are four forms of
redundancy that we will study: hardware, software,
information, and time.

Hardware faults are usually dealt with by using hardware,
information, or time redundancy, whereas software faults are
protected against by software redundancy. Hardware
redundancy is provided by incorporating extra hardware into
the design to either detect or override the effects of a failed
component. The best-known form of information redundancy
is error detection and correction coding. Here, extra bits
(called check bits) are added to the original data bits so that an
error in the data bits can be detected or even corrected. Note
that these error codes (like any other form of information
redundancy) require extra hardware to process the redundant
data (the check bits). Error-detecting and error-correcting
codes are also used to protect data communicated over noisy
channels, which are channels that are subject to many
transient failures.

Time redundancy can thus be used to detect transient faults
in situations in which such faults may otherwise go
undetected. Time redundancy can also be used when other
means for detecting errors are in place and the system is
capable of recovering from the effects of the fault and
repeating the computation. Software redundancy is used
mainly against software failures. one way is to independently
produce two or more versions of that software Just as for
hardware redundancy, the multiple versions of the program

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

576

 can be executed either concurrently (requiring redundant
hardware as well) or sequentially (requiring extra time, i.e.,
time redundancy) upon a failure detection.

D. Basic Measures of Fault Tolerance

A measure is a mathematical abstraction that expresses
some relevant facet of the performance of its object. By its
very nature, a measure only captures some subset of the
properties of an object. The goal in defining a suitable
measure is to keep this subset large enough so that behaviours
of interest to the user are captured, and yet not so large that
the measure loses focus.

a) Traditional Measure
Two of these measures are reliability and availability.

Closely related to reliability is the Mean Time to Failure,
denoted by MTTF, and the Mean Time Between Failures,
MTBF. The first is the average time the system operates until
a failure occurs, whereas the second is the average time
between two consecutive failures. The difference between the
two is due to the time needed to repair the system following
the first failure.

b) Network Measure
There are more specialized measures, focusing on the

network that connects the processors together. The simplest of
these are classical node and line connectivity, which are
defined as the minimum number of nodes and lines,
respectively that have to fail before the network becomes
disconnected.

III. SOFTWARE IMPLEMENTED HARDWARE FAULT
INJECTION TECHNIQUE

The general approach is to treat reliability as a system
problem and to decompose the system into a hierarchy of
related subsystems or components. The reliability of the lift
system is related to the reliability of the hardware, software
and human components. Software development is quite
different from hardware development because software
reliability is based on the varying values of the input, the huge
number of input cases, the initial system states, and the
impossibility of exhaustive testing. On the other hand, source
of most hardware errors is equipment failure.

Fig. 2. Basic Components of a Fault Injection Environment

Mechanical hardware can jam, break, and become worn-out,
and electrical hardware can burn out, leaving open or short
circuit etc. Software Implemented Fault Injection Technique

(SWIFIT) is a very attractive since it does not need specific
hardware to realize the fault injection (Fig. 2.).

It can be used to prove the failure tolerance mechanisms at
different levels of system abstraction including architectural,
functional, logical, and electrical and allows us the control of
the location, time, duration, and type of the injected faults
much more easily than does physical injection.

A global functional structure of the lift processor system is
given in Fig.3. Structure is composed of a number of lift
processor clusters LPCi. The system is intended for
controlling more lift units so-called multiplex lift system
(duplex, triplex). The clusters are connected by XNET bus
based on RS485. As can be seen on Fig.4, the one lift
processor cluster is of distributed structure connected by
LNET bus, also of RS485 type. The lift processor cluster is
composed of following nodes: Master node, M, which directly
controls most of actuators in system (motor, valves, brakes,
and others). Cabin node, CAB, acquire all information from
moving car, and from automatic door control. Register box,
RB, for collecting requests from passengers in lift and
displaying all necessary information. A corresponding number
of floor processors FPi on each floor. Getaway for connecting
to XNET bus is realized trough master node.

Fig. 3. Topology lift system

This approach would provide the desired flexibility, and at
the same time, would allow us to execute many experimental
runs in a relatively short time. The generally accepted solution
to this problem is to inject the faults in a simulation model or
a prototype implementation [4], and to observe the behaviour
of the system under the injected faults.

Previously mentioned flexibility is consequence of
topology system i.e. distributed pattern. This solution of the
communication segment gives us possibility to insert the fault
injection tool between some communication node and in this
way simulates every possible hardware faults. The structure
gives us possibility to insert the fault injection tool any point
in LNET or XNET bus. Hence, in this way we can simulate
most of hardware faults. Additionally, the SWIFIT can be used
in development phase as simulation tool. Model that is used in
this approach in the literature is well known like the FARM

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

577

 Model. The major requirements and the problem related to the
development and application of a validation methodology
based fault injection are presented through FARM model.
When the fault injection technique is applied to a target
system, the input domain corresponding to a set of faults F,
and a set of activation A, which consist of a set of test data
patterns aimed at exercising the injected faults, and the output
domain corresponds to a set of readouts R, and set of derived
measures M.

Fig. 4. Operation mode of SWIFIT model

In this paper, we look output domain measurement segment

using the PC oriented Graphical User Interface environment
that is written in Dot Net C# language. Screenshot of this
program is give on the Fig. 5.

The resulting measures are computed from the data that is
collected by the system in the several test-runs (Status_Buffer)
and at the request of the user forward to PC where are stored
in so-called dump file.

Fig. 5. Screenshot of the program

Measurement is an off-line process carried out in function

of the objective of the fault injection campaign. It is also
important the validation of the target system that guarantees
its correct specified behavioural in a failure scenario, in the
case that fault and error propagates to the output. In addition
to the above-mentioned off line measurement and analysis,
program has on-line on the visual presentation of error
detection and locating sources of error activating image sensor
in the flash presentation of the program.

This approach also tested the software in two ways:

1. Logical software bug across on-line debugging method
and,

2. Recovery code - the part of the code that is designed to
respond in the case to detect error states.

Recovery code should gracefully restore the system to a
valid state before a failure occurs. Our goal is to create
potentially error free or zero-probability software with
creating fault tolerant software, and to demonstrate that a
software is completely correct for many number of possible
executions scenario in the real life.

This approach also provides an opportunity to developed
software, after the phase of the system design and analysis,
can be applied to remote tracking and monitoring of the
system status with minor hardware redundancy interface
(Ethernet Controller or WLAN 802.11 modules for Internet
access, or GSM module).

IV. CONCLUSION

In this paper part of the FARM model is presented. Our goal
has been to make the validation of the target system that
guarantees its correct specified behavioural in a failure
scenario and to understand the processes in the segment of
communication, timing and protocol on the physical and the
higher levels of ISO/OSI model. Hese actions consist of
detecting the fault, identifying the system component affected
by the fault, and taking an appropriate recovery action which
may involve system reconfiguration. Each of these actions
takes time that is not a constant but may change from one
fault to another and may also depend on the current workload.

Also, should be noted that in the paper mentioned some of
the possible scenarios and solutions that are arising from the
analysis. In this way, there has been a major tendency to
develop reliable software for a very complex system such as
the lift with which it is possible to lower price hardware
implementation. During the exploitation of proposal model,
system components whose failure is more likely to result in a
total system crash are identified, also identified optimal
chekpointing having in mind that it is a distributed system,
developed a reliable protocol, considered problem the
synchronization at the level of the system, considered the
scenario a violent intrusion into the system, etc. Mention that
the software solution and has RS232 and USB interface to
SUT, and that in this way achieved universality and flexibility
of the program that makes it suitable for other application

REFERENCES

[1] I. Koren, C. Mani Krishna,, Fault tolerant system, San
Francisco, Elsevier, Inc., 2007

[2] B. Selic, “Fault tolerance techniques for distributed systems”,
www.ibm.com

[3] M. L. Shooman, "RELIABILITY OF COMPUTER SYSTEMS
AND NETWORKS Fault Tolerance, Analysis, and Design",
New York, John Wiley & Sons, Inc., 2002.

[4] Branislav D. Petrović, Goran S. Nikolić, Koncepcija procesora
lifta sa distribuiranom strukturom, ZBORNIK RADOVA
31.KONGRESA SA MEDJUNARODNIM UČEŠĆEM –
HIPNEF 2008, Vrnjačka Banja, Srbija, 15 – 17. oktobar 2008,
pp. 179 – 184

 ICEST 2009 25-27 JUNE, 2009, VELIKO TARNOVO, BULGARIA

578

