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Abstract – In this paper one algorithm for automatic 

modulation classification based on sixth-order cumulants is 

presented. Expressions for standard deviations of sixth-order 

cumulant sample estimates are derived, and performance of 

proposed algorithm and algorithm based on fourth-order 

cumulants is compared. Sixth-order cumulants method shows 

much better accuracy in distinguishing BPSK from complex 

valued modulation techniques, and this conclusion is confirmed 

via Monte-Carlo simulations.   
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I. INTRODUCTION 

Automatic modulation classification (AMC) represents one 

of most up-to-date topics in telecommunications, with natural 

application in cognitive radio, electronic warfare and 

surveillance systems. It considers methods for identification 

of modulation techniques used at transmitter by observing and 

processing received data samples, commonly distorted during 

propagation. Because of their simplicity, pattern-recognition 

methods of AMC, based on extraction of key features of 

received signal, are very popular. As key features in pattern-

recognition, higher-order statistics – cumulants and moments, 

are usually considered. While fourth-order cumulants in AMC 

applications are analyzed in detail ([1], [2]), and their variance 

of the sample estimates are described with expressions 

derived in [2], sixth-order cumulants have not been evaluated 

in such manner yet, to the best of our knowledge. 

 In this paper we present one algorithm for AMC based on 

sixth-order cumulant features, then we derive expressions for 

its variance sample estimates, and suggest a criterion for 

comparison of performance of different cumulant-based 

algorithms. We have analyzed algorithm’s performance in 

cases with BPSK, QPSK, 16-QAM and 64-QAM 

constellations, with goal to compare it with algorithm based 

on forth-order cumulants. Although it is commonly believed 

that sixth and higher-order cumulants provide no additional 

benefit due to their increased measurement-error variance [3], 

analysis presented in  this paper shows that in some scenarios 

sixth-order cumulants are characterised with better 

classification selectivity. 

II. AMC ALGORITHM  

The received signal sequence ( )y n  in any communication 

system can be represented by: 
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where ( )x n  stands for transmitted modulated symbols, 

( ), 0... 1h k k L= − are coefficients of channel of length L, and 

( )g n  is additive white Gaussian noise with a zero mean and a 

variance of 
2

g
σ . Cumulants of random variable x can be 

expressed using the joint cumulant formula [4]: 
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where the π  runs through the list of all partitions of {1,…,n}, 

and B runs through the list of all blocks of the partition π . 

For zero-mean random variable x, associated with transmitted 

data sequence ( )x n , the second-order cumulant 
*

21, ( , )xC cum x x=  is given by: 

 
2

21,
( )

x
C E x=   (3) 

The sixth-order cumulant * * *

63, ( , , , , , )xC cum x x x x x x=  can be 

expressed as: 

26 4 2 2 22 3

63, ( ) 9 ( ) ( ) 12 ( ) ( ) 12 ( )xC E x E x E x E x E x E x= − + +   (4) 

We will assume, without loss of generality, that the 

constellations are normalized to have unit energy (
21,

1
x

C = ). 

In practice, the self-normalized cumulants are estimated: 

 3
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ˆ /( )
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C C C=   (5) 

In practice, cumulants can be estimated only from the samples 

of the received signal ( )y n ; if channel is considered to be 

non-dispersive, i.e. received data is corrupted only by noise, 

we get the following expression for sixth-order cumulants of 

transmitted sequence: 
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An estimate of the variance of additive noise 
2

g
σ  is usually 

available in practice. 
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Table I shows the values of 63,
ˆ

x
C  for various modulation 

constellations, along with values of the fourth-order 

cumulants 42,
ˆ

x
C , self-normalized values of: 

 
24 22 2

42, ( ) ( ) 2 ( )xC E x E x E x= − −   (7) 

63,
ˆ

x
C  and 42,

ˆ
x

C  values can be used as key features in AMC. 

Although the theoretical feature-vector (i.e. mutual distance 

between nearby values of cumulants for considered 

constellation types) is increased with sixth-order cumulants, it 

is of interest to derive expressions for the variance of the 63,
ˆ

x
C  

sample estimates, in order to evaluate the algorithm in proper 

manner.     

III. VARIANCE OF  SAMPLE ESTIMATES OF  

 SIXTH-ORDER CUMULANTS 

It is usually assumed that variance of the estimate 21,x
C  is 

small enough to be ignored; however, in [2] it is demonstrated 

that this is not good assumption in general. Swami derived 

expressions for variance of sample estimates of fourth-order 

cumulants 42,
ˆ

x
C , in both cases when value of 21,x

C  is known 

exactly and when it needs to be estimated from the data. We 

will focus on the second case, since it describes the situation 

in practice in more realistic manner, i.e. when AMC is 

performed at the receiver without any a priori knowledge 

about energy of transmitted signal. According to [2], variance 

of the sample estimates of 42,
ˆ

x
C  for complex constellations,  

with N samples, is given by:   

2 3

42, 8,4 4,2 2,1 4,2 2,1 6,3 2,1
ˆvar( ) [ ] 4 [3 2 2 ]xN C m m m m m m m≈ − + − +   (8) 

where 
*

,
[ ( ) ]

k m m

k m
m E y y

−=  represents mixed moment of 

order k with m conjugations. For real constellations variance 

is given by: 

2 3

42, 8,4 4,2 2,1 4,2 2,1 6,3 2,1
ˆvar( ) [ ] 6 [5 2 3 ]xN C m m m m m m m≈ − + − +   (9) 

We derive the variance of the estimates of the cumulants in 

(4), under the same assumptions as those used in Swami’s 

work: sample estimates 
,k m

m  are unbiased and asymptotically 

Gaussian with variance 
2

2 , ,( ) /k k k mm m N− , and similar results 

hold asymptotically for the sample estimates of the cumulants. 

 

A. Complex signals 

For complex signals 2
( ) 0E x =  and equation (4) is reduced: 
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From above expression we can notice that 63,xC  is only 

asymptotically unbiased; if N is large enough, the bias can be 

considered for negligible. In eq. (13) and (14) we have 

omitted the 2(1/ )O N  and 3(1/ )O N  terms in asymptotic 

analysis – the same will be done in following considerations. 

The exact error variance can be expressed as: 
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From eq. (12) and (17) we get: 

2 2
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Similarly, we have: 
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By combining the various sub-expressions at eq. (15), we 

finally obtain: 
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B. Real signals 

In case of real signals, 
22( ) ( )E x E x= , so eq. (4) becomes:  

 
3

63, 6,3 4,2 2,1 2,1
9 24
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 3
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9
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N
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and 63,xC  can be considered for asymptotically unbiased, 

under  the same assumptions as were made in previous 

section. The error variance can now be expressed as: 
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Using the sub-expressions (16)-(22), with N samples, we get 

the variance expression: 
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IV. PERFORMANCE ANLYSIS AND SIMULATION  

Variance of the sample estimates for the 42, xC  and 63,xC , 

calculated for BPSK, QPSK, 16-QAM and 64-QAM signals 

from eq. (8), (9), (23) and (27), are presented in Table I. It can 

be noticed that sixth-order cumulants, as expected, are 

characterized with increased variance of sample estimates, 

along with larger distances between nearby values for 

considered modulations. In order to compare performance of 

fourth and sixth-order cumulants-based algorithms, we use a 

ratio of standard deviation and mutual distance of nearby 

values ( ρ ), for both 42, xC  and 63,xC , as a measure of 

algorithm’s selectivity.    

TABLE I  

 STATISTICAL PARAMETERS OF INTEREST FOR VARIOUS 

CONSTELLATION TYPES 

 

By observing values of ρ  from Table I, we can confirm 

that distinguishing BPSK from QPSK is better with sixth-

order cumulants criteria (because of 3.464/2=1.732 times 

lower ratio of standard deviation and distance from BPSK 

value for QPSK signals), while classification of QAM-

modulated signals shows to be slightly better with fourth-

order cumulants. Considering complex-valued noise, we find 

that its ratio ρ  is also 1.732 times lower for BPSK-QPSK 

values of 63,xC , meaning that for low values of SNR, where 

impact of noise on classification algorithm is significant, 
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63,xC features give the same performance with approximately 

10log10(1.7322)=4.77dB lower SNR in comparison with case 

where 42, xC  is used for classification criteria. If only QAM-

modulated signals in AWGN are considered, 42, xC  shows 

better performance for approximately 1.7dB lower SNR in 

comparison with 63,xC . 

With goal to test both algorithms in modulation 

classification problems, we carry out the simulations through 

2,000 Monte-Carlo trials and N received data samples are 

collected for AMC in each trial. Algorithm with 63,xC  features 

is simulated along with algorithm based on 42, xC  features in 

non-dispersive channel conditions (no multipath, AWGN 

only), and with noise power 
2

g
σ  considered to be known. 

Correct classification probability CC
P  was calculated versus 

SNR, with two scenarios of different sets of modulation 

candidates considered: (i) {BPSK, QPSK} and (ii) {QPSK, 

16-QAM, 64-QAM}. Simulation results for scenario (i) are 

presented in Fig. 1, while results for scenario (ii) are shown in 

Fig. 2. The simulation results are in good agreement with 

theoretical arguments: while the algorithm based on 63,xC  

features shows significantly better performance than the one 

based on 42, xC  features in case of {BPSK, QPSK} scenario, in 

case of {QPSK,16-QAM,64-QAM} scenario, difference in 

performance is negligible. For the best performance, hybrid 

classification criteria can probably be used, for example: some 

that’s using sixth-order cumulants for classification of BPSK 

signals, while for complex-valued signals fourth-order 

cumulants are used. However, achieved results are promising 

that sixth-order cumulants could show good performance even 

in the channel context that goes beyond the scope of influence 

of AWGN only; such are channel models that we have 

considered within our previous work at the field of AMC [5].   

 

 

Fig. 1.  Correct classification probability in {BPSK, QPSK} 

scenario, N=250 

 

 

Fig. 2.  Correct classification probability in {QPSK, 16-QAM, 64-

QAM} scenario, N=2000 

 

V. CONCLUSION 

In this paper algorithm for automatic modulation 

classification based on sixth-order cumulants is presented. 

Expressions for variance of the sample estimates of sixth-

order cumulants are derived, and proposed solution is 

compared with fourth-order cumulants. As a criterion for 

comparison of algorithms, the ratio of standard deviation and 

feature vector is used, and theoretical conclusions are tested 

via simulations. Achieved results show that proposed 

algorithm shows very good performance in distinguishing 

BPSK from complex-valued modulations, and slightly lower 

performance when used for classification of QAM-signals. In 

this paper only channel with AWGN was considered; realistic 

picture of algorithm’s performance can be formed if multipath 

channels are considered as well, and that topic represents the 

scope of our future work.     
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