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Abstract – A novel method for solving nonlinear algebraic 
equations describing behaviour of self-excited induction 
generator, based on the MATLAB Optimization Toolbox 
routines, is presented in paper. Using this approach, critical 
rotor speed and excitation capacitance requirements under 
different loading conditions have been considered. Accuracy of 
prediction has been improved by including core losses into the 
calculations. 
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I. INTRODUCTION 

The concept of self-excited induction generator (further: 
SEIG) has been known since 30’s years of last century, when 
Basset and Potter in [1] reported that an induction machine, 
whose rotor was externally driven by some prime mover, 
could act as autonomous generator if capacitor bank of 
appropriate capacitance was connected across stator terminals. 
Except a few sporadic responses, there was no serious 
research of SEIG untill the 80’s years of the 20st century. 
During that long period it has been usual to consider SEIG as 
something that is possible, but not practically acceptable, in 
first line due to it’s poor regulation characteristics. 

After the first signs of the global energetic crisis, scientists 
and researchers from all over the world increased their interest 
in SEIG, recognizing it’s huge potentials for stand-alone 
power generation. Recently published research overviews [2], 
[3] indicate that serious work is still to be done in order to 
achieve acceptable level of performance to price ratio. 

Difficulties related to solving of equations describing the 
SEIG behaviour were perhaps the greatest problem that 
researches had faced in earlier years. The main obstacle 
emerges from the fact that when machine operates as a SEIG, 
both voltage and frequency are independent variables. 
Different methods and formulas for approximate analysis have 
been proposed, but common point in the most of approaches 
has been to simplify equivalent circuit of the machine, 
neglecting core losses for example. Having in mind the 
physics of self-excitation process [4], [5] which implies that 
machine’s operating point has to be in the saturated region of 
the magnetizing curve, it is clear that such simplifications 
affect accuracy of prediction. On the other hand, they 
appeared to be necessary, due to great mathematical 
difficulties that emerged even in trying to solve nonlinear 
equations obtained from simplified circuits. 

There are numerous phenomena that can be analysed when 
research of SEIG is performed. Determination of critical 
speed or capacitance necessary for self-excitation is of great 
importance, and there was significant work in the past 
considering this type of problems [6], [7]. Besides mentioned 
simplifications in analysis, the usual approach in literature is 
to consider critical conditions for self-excitation of an 
unloaded machine, which is operating state with no practical 
significance. Also, the analysis is usually performed across 
one dimension, meaning that critical speed for exact 
capacitance or critical capacitance for exact speed is 
calculated. 

In this paper, an unified approach is used to calculate 
contours defining critical speed-capacitance combinations 
under different values of symmetrical three-phase load 
connected to the stator terminals. Calculation has been 
simplified using a method for solving nonlinear algebraic 
equations based on the MATLAB Optimization Toolbox 
routines [8]. This method also allowed core losses to be taken 
into account easily. 

II. MATHEMATICAL MODEL 
Equivalent circuit of an SEIG with R-L load connected to 

stator terminals is shown on Fig. 1. Core losses are modeled 
by adding resistor cR  in parallel with magnetizing inductance 

mX , as it was proposed in [8].  

 
Fig.1. Per-phase equivalent circuit of a three-phase SEIG  

The meaning of used symbols is: 

sR , rR , LR  - stator, rotor and load resistance; 

cR      - magnetizing resistance; 

mX      - magnetizing reactance at rated frequency ; 

lsX , lrX , LX  - stator leakage reactance, rotor leakage 
   reactance and load reactance at rated 
   frequency; 

CX      - capacitor reactance at rated frequency; 

sns ffF =   - actual to rated stator frequency ratio [p.u.]; 

snnn=Ω   - actual rotor speed to rated synchronous 
speed ratio [p.u.]. 

1Milan M. Radić is with the Faculty of Electronic Engineering,
Aleksandra Medvedeva 14, 18000 Nis, Serbia 
E-mail: milan.radic@elfak.ni.ac.rs 
2Zoran P. Stajić is with the Faculty of Electronic Engineering,
Aleksandra Medvedeva 14, 18000 Nis, Serbia 
E-mail: zoran.stajic@elfak.ni.ac.rs 

435



Values of all machine parameters are expressed in ohms. 
Also, parameters describing the rotor part of the equivalent 
circuit are refered to stator, although there is no explicit 
notification neither in Fig. 1, nor in the text. 

In general, both cR  and mX  are variables, depending on 
the actual conditions of operation, but in this analysis they 
will be considered as constants. Assumption that cR  has a 
constant value is questionable, because it neglects the fact that 
core losses depend on frequency. On the contrary, assumption 
that magnetizing reactance is constant, when critical 
conditions for self-excitation are considered, absolutely 
matches the truth. 

From the theory of self-excitation it is known that 
machine’s operating point have to be in saturated zone of the 
magnetizing curve, what can be expressed as munsm XX < , 
where munsX  is the value of magnetizing reactance in 
unsaturated state. In other words, limit of stability is 
determined by relation munsm XX = , which explains previous 
statement. 

From the equivalent circuit shown on Fig. 1, using 
impedance loop method, can be written: 
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Since in steady-state stator current sI  differs from zero, it 
follows that totZ  must be zero, and that can be written as: 

 { } 0Re =totZ  (5) 

 { } 0Im =totZ  (6) 

Eqs. (5) and (6) are basic equations of an SEIG, and they have 
to be satisfied in any stable operating condition. 

After some mathematical operations, Eqs. (5) and (6) can 
be written as: 
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and 
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If all parameters of the equivalent circuit, including 

reactance of the capacitor CX  are known, it is possible to 
determine relative rotor speed Ω  and relative frequency F  
by solving Eqs. (7) and (8). However, it is necessary to use 
some numerical method, since Eqs. (7) and (8) are high-
degree nonlinear equations. If any of standard methods is 
selected for this purpose (e.g. Newton-Raphson iterative 
method), it demands long-lasting mathematical 
transformations in order to get appropriate form of equations. 
Even if this work is properly done, serious problems related to 
convergency of the process will occur in the next phase, 
which makes such approach almost useless. 

In this paper, system of two nonlinear equations is solved 
using user-friendly numerical routine from MATLAB 
Optimization Toolbox, named fsolve. This routine uses 
nonlinear least-squares algorithm that employs Levenberg-
Marquardt method. 

The first important feature of the fsolve routine is that 
further mathematical derivations are not needed, because it 
can easily operate with Eqs. (7) and (8). Also, it has extremely 
good convergence, and if no serious mistake is made during 
definition of starting vector values, zeros of the system are 
easily calculated. 

During analysis whose results are presented here, reactance  
of capacitor has been varied across wide range, using program 
loop and considering that all other parameters in the 
equivalent circuit are constant. For each different value of 
capacitor reactance (i.e. capacitance), two different values of 
relative speed Ω  and frequency F  have been calculated. The 
first solution can be obtained if starting vector +Ω][F  is 

defined as +ΩΩ ]98.0[ , and the second one if starting 

assumption is approximatelly +ΩΩ ]6.0[ . As a result, this 
calculations finally give pairs of values ),( ΩC  that define 
closed contour in the Ω−C  plane. This contour presents 
critical speed-capacitance conditions that have to be fulfilled 
in order to sustain self-excitation under specific loading 
conditions. 

III. NUMERICAL RESULTS 

 Presented approach has been used to calculate critical 
speed-capacitance contours for real three-phase squirrel-cage 
induction machine operated as an SEIG. Stator of the machine 
is star-connected, with rated values for motor mode of 
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operation V380 , Hz50 , A2.3 , rpm2860 . Parameters of 
the machine are given in Table I. 

TABLE I 
MACHINE PARAMETERS 

sR  4.05 Ω  

rR  2.75 Ω  

lsX  4.34 Ω  

lrX  2.77 Ω  

munsX  226 Ω  

cR  1200 Ω  

Load impedance connected across stator terminals can be 
expressed as Lj

LL eZZ ϕ= , where Lϕ  is angle of impedance 
at rated frequency. Created mathematical model allows 
investigation of performance of an SEIG under any type of 
symmetrical R-L load. In order to identify influence of load 
impedance variation to the shape of critical Ω−C  contours, 
in this analysis pure resistive load has been assumed. Results 
can be seen in Fig. 2. Log scale is used for the sake of better 
visibility. The actual load resistance used in calculation is 
assigned to it’s resulting contour. Values of load resistance 
per phase are expressed in p.u., where Ω= 5.68.up.1 .  
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Fig. 2. Critical Ω−C  contours for different load resistances LR  

From Fig. 2 it is obvious that if load resistance is set to the 
constant value, self-excitation can be achieved for many 
different combinations of rotor speed and excitation 
capacitors. Pairs of values ),( ΩC  lie on the closed contour of 
irregular shape. Identification of such contours is of great 
importance because they represent critical conditions that 
have to be fulfilled in order to sustain self-excitation of 
symetrically loaded SEIG. For a specific value of load 
resistance LR , point whose coordinates are ),( ΩC  must be 
inside relevant contour. Only in this case SEIG will be able to 
generate power in steady state. Otherwise, if the point defined 
by ),( ΩC  lies outside the critical contour, self-excitation will 
fail. 

There is the point defined by minimum possible 
capacitance minC , and also the point defined by maximum 
possible capacitance maxC , on each contour. At this points, 
self excitation can exist only if relative rotor speed has the 
exact value. For any other value of capacitance that lies 
between minC  and maxC , relative rotor speed can take random 
value between boundry values defined by contour. Similiar 
analysis could be done if relative rotor speed is observed 
instead of capacitance. 

Important conclusion that issues from the Fig. 2 is that 
dimensions of critical Ω−C  contours expand as load 
resistance LR  takes higher values. The contour will be largest 
when generator is not loaded, since ∞→LR , but this 
operating state is not of great practical importance. This is the 
reason why critical contour of SEIG under no load has not 
been calculated. If Fig. 2 is carefully studied, it could be 
noticed that dimensions of contours rapidly shrink when load 
resistance falls under 1 [p.u.]. Intuitive conclusion can be 
made that there is certain minimum of load resistance minLR , 
at which critical contour does not exist anymore. Instead of 
contour, there is only point defined by the exact pair of values 

),( ΩC . It is obvious that load resistance must not take value 
lower than minLR , because SEIG will not be able to sustain 
self-excitation under such circumstances. This critical value of 
load resistance is function of machine’s equivalent circuit 
parameters, and can not be changed. 

However, previous considerations have mostly theoretical 
meaning. Practical application imposes limitations in rotor 
speed and capacitance of the capacitors connected to stator. It 
is not safe to run rotor of a conventional induction machine at 
speeds that are several times higher than rated synchronous 
speed, since mechanical stress and vibrations may cause 
serious damage. Also, from the aspect of economy, it is not 
reasonable to use large capacitor units, whose prices are 
exceeding price of induction machine. Having this in mind, it 
is enough to define only those parts of critical Ω−C  contours 
that are situated in the region of practically acceptable speeds 
and capacitances, as shown on Fig. 3.   
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Fig. 3. Practically significant segments of Ω−C  contours 
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Influence of combined resistive-inductive load can be 
observed from the Fig. 3. Curves calculated with assumption 
that load is purely resistive ( 1cos =Lϕ ) have been drawn 
with solid lines. Dashed lines represent critical Ω−C  curves 
calculated for 8.0cos =Lϕ . It is obvious that presence of 
inductivity in load impedance leads to increased demands in 
applied capacitance, if rotor speed remains constant. In the 
case that capacitance remains constant, rotor has to run at 
higher speed to enable self-excitation, if combined resistive-
inductive load is connected to the stator. 

Curves presented in the Fig. 3 can also be used for quick 
estimation of possible consequences of desired loading, 
according to the actual operating state. For example, if 
machine whose parameters are given in Table I operates as an 
SEIG with excitation capacitance FC μ20=  and at rotor 
speed p.u.2.1=Ω , it will be possible to decrease load 
resistance from p.u.31 =LR  to p.u.12 =LR , without loss of 
self-excitation. The previous statement is clear if we notice 
that the point with coordinates )p.u.2.1,20(),( FC μ=Ω  is 
placed above both critical Ω−C  curves. On the contrary, if 
rotor speed is constant, but has the value p.u.1=Ω , described 
manipulation would lead to loss of self-excitation because the 
point )p.u.1,20(),( FC μ=Ω  lies below critical curve for 

p.u.11 =LR  

IV. CONCLUSIONS 

Critical rotor speeds and excitation capacitances required 
for sustainable operation of an SEIG loaded with symmetrical 
three-phase load of arbitrary value and type, have been 
investigated in this paper. Mathematical difficulties that had 
been following any intention to solve nonlinear equations 
describing an SEIG in the past, have been succesfuly 
eliminated by using fsolve routine from MATLAB 
Optimization Toolbox. Based on this approach, full 
calculations have been performed, without need to simplify 
exact equivalent circuit of an SEIG by neglecting core losses. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It has been shown that, for arbitrary load impedance that is 
greater than minimum allowed value,  exact closed contour in 

Ω−C  plane can be defined. This contour can be considered 
as a set of critical rotor speed and capacitance combinations 
that allow operation of an SEIG at the limit of stability. Due to 
it’s nature, it could be named as „critical Ω−C  contour“. For 
a given load impedance LZ , sustainable self-excitation will 
exist only if the point whose coordinates are ),( ΩC  is placed 
inside the critical contour. Dimensions of critical contour 
expand as load impedance tends to get higher values. Shape of 
the contour is not uniform, and for the exact value of LZ  it 
will be affected by actual value of load power factor at rated 
frequency.  
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