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Abstract – Functional networks represent extension of neural 
networks, which deal with general functional models. In this 
paper, we present Legendre-type orthogonal functional network 
and their application in the modeling of dynamical systems. As 
an example of the proposed modeling method, we considered the 
modeling of the hydraulic multi tank system. 
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I. INTRODUCTION 

Functional networks were first introduced in [1, 2]. They 
represent extension of the standard neural networks and unlike 
neural networks, they deal with general functional models. 
Functional network have many advantages, so the problem 
that can be solved by the neural network, also can be 
formulated by functional network [1]. There are also many 
examples that cannot be solved by the neural network but can 
[1-3] be naturally formulated using the functional network. 
Neuron functions may be multivariate, multi-argument, and 
different. Functional network is a very useful general 
framework for solving a wide range of problems: the solving 
of differential functional and difference equation [2], 
nonlinear time series and prediction modeling [3], 
factorization model of multivariate polynomials [4], the 
identification of nonlinear system [5], linear and nonlinear 
regression [4], approximation functions [6] etc. Some of these 
applications have been developed in [5-7]. In this paper, an 
orthogonal functional network model is presented whose 
neuron functions are approximated by Legendre orthogonal 
basis functions. 

The Legendre polynomials and their orthogonal properties 
were established during eighteenth century. One of the most 
important applications of Legendre orthogonal functions is 
designing orthogonal  filters [8-11] which are useful for 

forming orthogonal signal generators, least square 
approximations and practical realizations of optimal and 
adaptive systems. This paper describes a method for obtaining 
classical orthogonal Legendre functions using a new 
transform. The obtained functions have been used to design 
orthogonal neurons that enable generating the known 
orthogonal functions in the form of real physical signals. The 
parameters and weights of the Legendre orthogonal functional 
network are determined by genetic algorithm as the learning 
algorithm and known optimization technique. As a case study, 
an experimental three tank hydraulic system was considered. 
Experiments were performed to approve theoretical results 
and demonstrate that the method described in the paper is very 
suitable for modeling dynamical systems in the sense of 
accuracy and algorithm speed. 

II. LEGENDRE ORTHOGONAL FUNCTIONS 

Consider the orthogonal, shifted Legendre polynomials in 
their explicit form [11-12]: 
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These polynomials are orthogonal over interval (0, 1). From 
Eq. (1) we obtain the sequence of Legendre type orthogonal 
polynomials: 
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After applying the substitution tx e−=  into Eq. (1) and 
Laplace transform, the following rational function can be 
obtained: 
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Denote for ( ) ( )1
n nt L W sϕ −= ⎡ ⎤⎣ ⎦  series of Legendre 

exponential functions orthogonal over interval ( )0,∞  with 

weight ( ) tw t e−=  i.e.: 
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Rational functions given with (3) can be factorized and 
realized in the form of the filter. Each filter section with 
transfer function (s-i)/(s+i) can be easily practically realized 
(Fig. 1). 

 
Fig. 1. Practical realization of the single filter section 

III. LEGENDRE ORTHOGONAL FUNCTIONAL 
NETWORKS 

Typical architecture of a functional network [6] is given in 
Fig. 2. 

 
Fig. 2. A functional network model 

 
Besides of the input (x1, x2, x3) and output (x6) layers, a 

functional network consists of one or more layers of 
intermediate storing units (x4, x5), which store information 
produced by neuron units, and one or more layers of 
processing units (f1, f2, f3). A neuron unit evaluates a set of 
input values, coming from the previous layer (or input units) 
and delivers a set of output values to the next layer (or output 
units). Each neuron has associated neuron function that can be 
multivariate and can have as many arguments as inputs. Once 
the input values are given, the output is determined by the 
neuron type and its function. 

If we use orthogonal basis functions for neurons, we can 
obtain general orthogonal functional network [13] (Fig. 3) 
with the following output: 
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If we use Legendre orthogonal series described in Section 2 as 
orthogonal basis, we can design Legendre orthogonal 
functional networks. Function fi in this case will represent the 
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signals of these sections are orthogonal in time domain. These 
networks can approximate any given function and model any 
system by adjusting variable weights wi. These weights are 
adjusted in such a way that we minimize the error 

( )e y f x= −  where f(x) represents either the function to be 
approximated or the response to the applied input signal x of 
the system to be modeled. In our experiments, optimal 
weights will be determined by genetic algorithm [14-15]. 

 
Fig. 3. A general orthogonal function network 

IV. EXPERIMENTAL RESULTS 

For the purpose of verification of our modeling method, we 
consider a multi tank hydraulic system manufactured by 
“Inteco”, Poland [16] (Fig. 4). The multitank system relates to 
liquid level control problems commonly occurring in 
industrial storage tanks. It comprises three separate tanks 
fitted with drain valves. The separate tank mounted in the base 
of the set-up acts as a water reservoir for the system. Some of 
the tanks have a constant cross section, while others are 
spherical or conical, so having variable cross section (this 
creates main nonlinearities of the system). Several issues have 
been recognized as potential impediments to high accuracy 
modeling and control of level or flow in the tanks: 
nonlinearities caused by shapes of tanks, saturation-type 
nonlinearities (introduced by maximum or minimum allowed 
level in tanks), valve geometry and flow dynamics, pump and 
valves input/output characteristic curve. 

 
Fig. 4. Multitank hydraulic system 
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In order to obtain a model for the given hydraulic system, 
method described in previous section is applied. The same 
step input signal (x=1) is applied to both the unknown system 
and Legendre orthogonal functional network with four 
neurons in the middle layer (four function in orthogonal 
basis). The only known data about the system is the measured 
output - tank liquid level H1 (f(x)), given in Fig. 5. 

 
Fig. 5. Step response of unknown hydraulic system (f(x)) 

 
The next step is to form difference of measured system 

output and functional network output as well as to calculate 
the error. Optimal parameters values for the best model of 
unknown system are determined by using genetic algorithm. 
Genetic algorithm used in experiment was with the following 
parameters: initial population of 200, number of generations 
100, stochastic uniform selection, reproduction with 10 elite 
individuals, Gaussian mutation with shrinking and scattered 
crossover. The goal of the experiment was to make a error 
(difference between the outputs from the system and from the 
functional network) as small as possible for a choosen input, 
i.e., to obtain the best model of the unknown system. So, we 
used error as the fitness function for the genetic algorithm. 
Experimental time was 300 seconds. 

After the experiment, following weights for the Legendre 
orthogonal functional network were obtained: w1=0.0691, 
w2=-0.0602, w3=-0.0332 and w4=0.0243. With these weights, 
final functional network output (y) is given in Fig. 6. We can 
see from the Figs. 5 and 6 that our functional network now 
represents accurate model of considered three tank hydraulic 
system. 

V. CONCLUSION 

In this paper we present a new method for obtaining models 
of dynamical systems based on Legendre orthogonal 
functional networks. Theoretical background on this method 
is given with full description of Legendre functions. Using 
these functions, we designed Legendre orthogonal functional 
network. Filters are described in details and illustrated. The 
idea for a new method for systems modeling is based on the 
fact that functions generated by Legendre network are 
orthogonal in the left semi plane of the complex plane, so this 

network is convenient for the modeling of continuous 
systems. 

 
Fig. 6. Step response of Legendre orthogonal functional network (y) 

 
Adjustable network which can be used for modeling of 

arbitrary systems can be designed on the basis of these 
functions. Specific models are obtained using adjustable 
weights. During the modeling of concrete unknown system, 
these weights are being adjusted in order to obtain the best 
model of unknown system in the sense of mean square error. 
Optimal adjustment of the weights is accomplished using 
genetic algorithms, which have demonstrated very good 
performances as global optimizers in many types of 
applications. 

In order to verify the obtained theoretical results, a 
modeling of a multitank hydraulic system is considered. 
Model of this system is obtained using a proposed modeling 
method. Experiments have demonstrated that the method 
described in the paper is very suitable for systems modeling 
and it achieves excellent results in the sense of modeling 
algorithm simplicity and speed as well as model accuracy.  
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