
 

Identification of One Class of Distributed Parameter 
Systems Based on Orthogonal Functions  

Mariana G. Todorova1 

Abstract – In this paper the identification issue of one class of 
distributed parameter systems (DPS) by means of two-
dimensional orthogonal polynomials and functions is studied. 
Suitable m-functions are proposed and numerical examples are 
conducted to demonstrate the validity and accuracy of the 
method.  
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I. INTRODUCTION 
Knowledge of the DPS mathematical model is a crucial 

point in its investigation of dynamic behavior and design of 
control systems. Two approaches to find models are usually 
applied: analytical and experimental.  

Mathematical modeling in the first approach, which is 
associated with the design phase of the facility, shall be made 
on certain assumptions and assumptions that largely determine 
the accuracy of the model.  

The second approach uses identification methods, including 
questions about the structure of the system model and its 
relevant parameters. Typically, the type of equations 
describing the model structure is chosen in advance based on 
a priori information about the ongoing physical processes and 
the task of the identification is reduced to parameter  
estimation. Identification of DPS is far more complex than the 
case of lumped parameter systems, because the mathematical 
model of DPS is often partial differential equations (PDE) or 
integral equations, and the solutions of DPS are concerned 
with not only initial conditions but also boundary conditions, 
which increases the complexity.  

Two methods of identification of DPS are usually used. The 
first class of methods uses some optimization approaches, 
such as Kalman filter algorithm, gradient method, genetic 
algorithm optimization [10], etc. The second class of methods 
translates the mathematical model of DPS into algebraic, 
transcendental or differential equations in advance and then 
identificates the translated system. Some of the approximation 
methods are: differential quadrature method (Bellman and 
Roth, 1979), Walsh functions (Sinha et al. 1980), finite 
element method (Brahmanandam and Chatterji, 1982), 
Laguerre polynomials [1, 2, 5], block – pulse functions [4, 6, 
7, 8], Haar wavelets [7, 9], etc.  

In this paper the attention is focus on the second class of 
methods. The identification of one class of DPS based on two-

dimensional orthogonal polynomials and functions is 
considered. 

The rest of the paper is organized as follows. In section II 
some mathematical preparations about often used orthogonal 
functions and polynomials are given. The properties of two-
dimensional orthogonal functions are considered. The 
algorithm of parameter identification for one class of DPS 
based on two-dimensional orthogonal polynomials and 
functions is presented in section III. In section IV, numerical 
simulations to demonstrate the validity and efficiency of the 
methods are given. Some conclusion in section V is made. 

II. MATHEMATICAL PREPARATIONS  
Orthogonal polynomials have very useful properties in the 

solution of mathematical and physical problems.  
The Laguerre polynomials )(zλ  are defined over a range 

[0; ∞). They can be defined recursively, defining the first two 
polynomials as zzz −== 1)(;1)( 10 λλ  and then using the 
following recurrence relation 

0)(.)().1.2()().1( 11 =+−+−+ −+ znzznzn nnn λλλ ,       (1) 
for any n ≥ 1. 

The first class of Chebyshev polynomials Т(z) is defined 
over a range [-1, 1]. In this paper we briefly call it Chebyshev 
polynomials. They are orthogonal polynomials with respect to 

the weighting function 
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recursively by using the following recurrence relation  
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where: zzTzT == )(;1)( 10 .  
     A block – pulse function (BPF) B(t) is defined over a time 
interval ],0[ Tt∈  as 
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     The orthogonal set of Haar functions H(t) is a group of 
square waves with magnitude of 2/2m±  in some intervals and 
zeros elsewhere. The Haar functions are defined as 
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where: jj kkmj 20;2;0 ≤<+=≥ ; 
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)(1 tH  - scaling function, pleased during the whole observed 
interval [0, T]. 
      The two-dimensional orthogonal functions ),( txFij  are 
defined as the set of orthogonal functions over the intervals 

],0[],,0[ XxTt ∈∈  as 
)().()},({ xFtFtxF jiij =                            (5)                 

     A function y(x,t), absolutely integrable in the region 
],0[],,0[ XxTt ∈∈ , may be approximated to 
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where: Y - two-dimensional orthogonal function coefficient 
matrix of the function ),( txy  nmijyY ×= ][ ;  
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      The orthogonal function )(tF  has the property 
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where MP  and NP  are correspondingly )( mm×  and )( nn×  
integral operational matrices. 

III. ALGORITHM OF IDENTIFICATION 
A DPS described by the following first order PDE is 

considered 
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where:  
u(x,t) and y(x,t) - are the input and the output of the DPS 
respectively;  
x – the variable of location ( ];0[ Lx∈ );  
t – time ( ];0[ Tt∈ );  
a1, a2 and a3 – the unknown system parameters.  
     The initial condition is )()0,( xfxy = and the boundary 
conditions are )(),0( xgty = . 
      Orthogonal polynomials and functions implementation 
reduces the problem of parameter identification of DPS to a 
computationally convenient form. The identification process 
includes the following fundamental steps. 

• Expansion of the input u(x, t) and output y(x,t) 
functions of the PDE into two-dimensional 
orthogonal polynomials or functions; 

• Rewriting of the PDE in the matrix form using the 
orthogonal functions properties and after some well 
known manipulations, i.e. 

HQA =. ,                                   (10) 
where: Q  – vector of the estimation values of the parameters 

3,1,ˆ =iai . 
• Solving of the obtained matrix equation for the 

vector of unknown parameters  using least – squares 
technique 

HAAAQ TT ..).( 1−=                              (11) 

IV. NUMERICAL SIMULATION 
Take a DPS, described by the PDE (9), where the real 

values of parameters are:  1,4,2 321 === aaa , the input is  
u(x,t)=4x+2t+xt,  y(x,0)=0, y(0,t)=0,  ]10;0[, ∈tx ). 

The Laguerre and  first class of Chebyshev polynomials, 
BPF and Haar orthogonal functions are used and  m – files are 
created in Matlab based on the algorithm above. The 
estimation values of the parameters for a few number m of 
two-dimensional orthogonal polynomials and functions are 
calculated. The obtained parameters  and relative parameter 
errors E are given in Table 1 and Table 2, where: 
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Table 1 

Estimation values of the parameters iâ  
 and relative parameter errors E by using m=4 

 
orthogonal 
polynomials 
and 
functions 

1â  2â  3â  
E [%] 

Laguerre 2,0043 3,9965 0,9998 0,12 
Chebyshev 1,9979 3,9903 1,0079 0,28 
BPF 2,0000 4,0000 1,0000 0 
Haar 2,1200 4,2500 0,7000 8,9 

Table 2 
Estimation values of the parameters iâ  

 and relative parameter errors E by using m=8 
 

orthogonal 
polynomials 
and 
functions 

1â  2â  3â  
E [%] 

Laguerre 2,0004 3,9864 1,0087 0,35 
Chebyshev 2,0001 3,9954 0,9994 0,10 
BPF 2,0000 4,0000 1,0000 0 
Haar 2,0918 4,1836 0,8469 5,59 
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     Obviously, the estimation precision is bigger when block – 
pulse function is implemented. By using a few number of two-
dimensional Haar orthogonal functions  the estimation 
precision is unsatisfactory.   
     The noise immunity of the identification algorithms is 
investigated. The output signal y(x,t) is simulated and 
independent zero – mean white Gaussian noise is applied for 
this purpose. The ratio nose-to-signal is q = 10% and q=14%. 
The relative parameter errors E, obtained by applying 
considered orthogonal polynomials and functions are shown 
in Figs.1-2. 

 
Fig.1 The relative parameter errors, obtained by applying m=4 

 
Fig.2The relative parameter errors, obtained by applying m=8 
 

As shown in Figs.1-2 the estimates of the parameters via 
BPF-approach are very accurate.  

V. CONCLUSION 

The Laguerre and  first class of Chebyshev orthogonal 
polynomials, BPF and Haar orthogonal functions are used for 
identification of one class of distributed parameter systems. 
Suitable m – files are created in Matlab based on the 
considered algorithms. Numerical examples are conducted to 
demonstrate the validity and accuracy of the method. The 
estimation values of the parameters for different number of 

two - dimensional orthogonal polynomials and functions are 
calculated. The noise immunity of algorithms for different 
ratio nose-to-signal is investigated.  

The following conclusions can be made. 
• The algorithms are comparatively simple in form and 

have low computer memory requirement.  
• The obtained identification precision is bigger when 

BPF are implemented. Results from numerical 
simulation show that just a few number of BPF are 
need for high accuracy. 

• The parameter estimations can be obtained 
comparatively accurate when bigger number of Haar 
orthogonal functions is applied. 
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