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Abstract – The structure related finite difference beam 
propagation method (SR-FD-BPM) is recently developed 
simulation technique for photonic and optoelectronic design. 
This paper reviews some key issues related to this conceptually 
straightforward and flexible numerical simulation technique. 
SR-FD-BPM is based on the numerical solution of the 3D vector 
Helmholtz’s equation subject to open boundary conditions. 
Structure related co-ordinate transformation approach allows 
the comfortable analysis of wide variety of geometrically 
complex light-wired photonic structures. Some illustrative design 
examples are presented in the paper.  
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I. INTRODUCTION 

Advances in photonics and optoelectronics in the 21st 
century have been mostly driven by the demands of the 
telecom and datacom boom. Stringent demands in ever-
changing photonics industry are to enable production of high-
quality components, to increase efficiencies and reduce costs. 
The research in modelling techniques and the developments of  
computer-aided design (CAD) software for modelling 
photonic and optoelectronic components and systems play the 
crucial and extremely significant role behind the industrial 
and commercial scene.  

The most of integrated photonics and optoelectronic 
devices and components are built in dielectric waveguide 
technology. The numerical simulation has become a 
mandatory approach providing excellent results in photonic 
design. Amongst several developed numerical techniques, the 
beam propagation method (BPM) is the most widely used 
numerical simulation technique for modelling photonic 
devices. BPM is a particular approach for numerical solving 
of appropriate approximation of an exact vector Helmholtz’s 
equation (known as the vector paraxial or Fresnel’s equation).  

FE-BPM, MoL-BPM, FDTD-BPM algorithm, etc., have 
been developed in recent two decades [1]. One of the most 
commonly used BPM simulation algorithm is the frequency-
domain based finite difference beam propagation method (FD-
BPM), [1-4]. FD-BPM gives a numerical solution of vector 
(or scalar) Fresnel’s equation for monochromatic waves 
(fundamental or higher order mode fields) propagating in the 
waveguide based photonic structure. Most commercial BPM 
software is based on FD-BPM.  

FD-BPM is usually implemented in a rectangular co-
ordinate system (standard FD-BPM), [2]. If the structure 
under analysis contains oblique or curved interfaces or when 
the structure is changing in the direction of the propagation, 
the inevitable staircase approximation of the boundaries 
causes serious problems and certain restrictions of the method. 
To avoid using the fine meshes and small propagation steps, 
FD-BPM has been reformulated in non-orthogonal structure 
related (SR) co-ordinate systems, [5]. In SR co-ordinate 
schemes for FD-BPM the discretisation procedure exactly 
matches the local geometry of the structure, thus eliminating 
non-physical scattering due to the staircasing effect. 

SR approach is used nowadays to design tapered, oblique 
and bi-oblique shaped waveguide-based devices, such as -
variant directional waveguide couplers, -branches, optical 
interconnects, waveguide polarizers, optical modulators and 
similar components that include waveguide bends. Some 
illustrative examples of SR design, including BPM analysis of 
a sloped walled rib waveguide and 3D SR-BPM analysis of an 
“S”-curved directional waveguide coupler, are given.  

II. STRUCTURE RELATED FD-BPM FORMULATION 

Attempts to overcome the presence of the staircasing in the 
FD related numerical methods have been resulted, during the 
last two decades, in the developing of the so-called improved 
FD-BPM schemes. The improved FD approach takes into 
account the boundary conditions for the field and its 
derivatives near the dielectric interfaces. Contrary to the 
improved FD approach, SR co-ordinate systems naturally 
follow sloped or curved geometry of dielectric interfaces. In  
SR FD-BPM algorithm coarser mesh sizes can be used for the 
same accuracy, in comparison to the rectangular FD schemes.  

A. SR-FD-BPM in the transverse plane 

For zz-invariant structures (constant cross-section in the 
transverse plane), the transverse plane (x; y)(x; y) is transformed in 
appropriate non-orthogonal SR co-ordinates. As an example 
of the SR-FD-BPM approach in the transverse plane, some 
results of the sloped walled rib waveguide analysis are given. 
The staircasing approximation of the sloped waveguide wall, 
obtained with the standard FD-meshing procedure in the 
rectangular co-ordinate system, is shown in Fig. 1.  

The simplest case of the scalar Helmholtz’s equation in the 
rectangular co-ordinate system (x; y; z)(x; y; z), reads 
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Fig. 1. Staircase approximation forced onto a rectangular grid in the 
transverse plane, causes non-physical numerical noise in simulation. 

 
where k = 2¼=¸k = 2¼=¸ is the free space wave number, ¸̧ is the 
operating wavelength, n = n(x; y)n = n(x; y) is the zz invariant refractive 
index and ©t(x; y; z)©t(x; y; z) represents the scalar transverse electric, 
EtEt, or magnetic field, HtHt. Eq. (1) is not suitable for obtaining 
stable numerical algorithms and it is usually replaced with its 
first order paraxial approximation by assuming a slowly-
varying envelope approximation of the transverse field, 
 

 ©t(x; y; z) = Fte
¡j¯z;©t(x; y; z) = Fte
¡j¯z;                              (2) 

 
where ¯ = kn0¯ = kn0 is an imposed propagation constant for the 
scalar  field envelope FtFt. By neglecting the @2=@z2@2=@z2 term, the 
one-way scalar paraxial wave equation, or Fresnel’s equation, 
in the Cartesian orthogonal co-ordinate system is obtained [2], 
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where n0n0 denotes a reference refractive index. Eq. (3) can be 
rewritten in any non-orthogonal transverse co-ordinate 
system. If we choose the non-orthogonal oblique co-ordinate 
system (u; v)(u; v) in the transverse plane, in which 
u = x¨ y tan µu = x¨ y tan µ, v = yv = y, one can derive the scalar paraxial 
wave equation in the oblique co-ordinate system as, [5-7], 
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where ¾ = j2kn0; ·2 = k2(n2 ¡ n2
0)¾ = j2kn0; ·2 = k2(n2 ¡ n2
0), the envelope of the 

field Ft = Ft(u; v; z)Ft = Ft(u; v; z) and the refractive index n = n(u; v)n = n(u; v) 
are functions of the oblique co-ordinates uu and vv. A sloped 
angle µµ is measured with respect to the negative direction of 
the yy axis. In Eq. (4) the sign “+” stands for the right-hand 
side type of the oblique co-ordinate system.  

In the case of a tapered co-ordinate system (t; v)(t; v) in the 
transverse plane, in which t = tan µ; x = t(y ¡ y0); v = y;t = tan µ; x = t(y ¡ y0); v = y; 
the scalar paraxial wave equation can be expressed as, [5-7], 
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where the envelope of the scalar field Ft = Ft(t; v; z)Ft = Ft(t; v; z) and the 
refractive index n = n(t; v)n = n(t; v) are functions of the tapered co-
ordinates tt and vv. The origin of tapered co-ordinate system 
(x0; y0)(x0; y0) is given parametrically as v0 = y0 = x0 cot µv0 = y0 = x0 cot µ. 

 

 
Fig. 2. SR “ROTOR” scheme of FD meshing, [6]. Interpolated field 
regions are shown in the small ellipses and interpolation procedures 
are shown in the zoomed ellipses (solid circles denote interpolated 

and empty circles denote directly sampled field values). 

 
Each discretisation scheme offers potential benefits. By 

using hybrid SR “ROTOR” (rectangular-oblique-tapered-
oblique-rectangular) FD-scheme, where non-orthogonal 
systems are coupled with rectangular one, FD-discretisation, 
where oblique interfaces are modelled exactly, can be 
obtained (co-ordinate SR lines are parallel with dielectric 
interfaces). Fig. 2 shows FD-discretisation with “ROTOR”-
type scheme of an asymmetrical sloped walled rib waveguide. 
The deficiency of the hybrid FD-schemes is the necessity to 
join different co-ordinate systems. However, this can be done 
by using a simple linear approximation. Interpolation 
procedures are illustrated in Fig. 2 and explained in [6]. 

 

 
Fig. 3. The filed plots obtained with the standard rectangular and SR 

“ROTOR” FD-BPM numerical simulations, [6]. 
 
By FD-discretising transverse waveguide field FtFt (Eqs.    

(3) ) in the appropriate waveguide regions, an FD-BPM 
algorithm can be easily developed. BPM field plots obtained 
by standard rectangular and SR “ROTOR” numerical 
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simulation algorithm (both emloying a standard Crank-
Nicolson (CN) method, an imaginary distance (ID) mode 
solver and the TBC boundary conditions at the edges of the 
computational window, [6]), after 500 BPM steps 
(4z = 1¹4z = 1¹m), with 4x = 4y = 0:1¹4x = 4y = 0:1¹m, are given in Fig. 3.  

Field plots are calculated for a symmetrical sloped walled 
rib waveguide (µ = 250; nf = 1 ; nc = 3:44 ; ns = 3:34µ = 250; nf = 1 ; nc = 3:44 ; ns = 3:34), 
with nreff = n0 = 3:40483nreff = n0 = 3:40483 obtained by ID mode solver. The 
deterioration of the field obtained in the standard FD-BPM 
simulation near the oblique boundaries is clearly indicated. 
SR-FD-BPM allows simulations with coarser meshes to a 
prescribed accuracy in comparison to the standard rectangular 
BPM, offering savings in computational time and memory. 

B. SR-FD-BPM in the longitudinal direction 

SR-FD-BPM approach is successfully applied to the 
photonic waveguide structures employing curved waveguide 
sections in the propagation direction. The 3D plot of the “S”-
curved directional waveguide coupler is given in Fig. 4. 3D 
geometry of the curved directional “Y”-branch is presented in 
Fig. 5. Staircase approximation forced onto a rectangular grid 
in the longitudinal direction is shown in Fig. 6. 

The approach of the longitudinally dependent SR-FD-BPM 
is illustrated by formulating the one-way scalar paraxial SR 
wave equation in the general 3D non-orthogonal co-ordinate 
system (u; v; w):(u; v; w): If we choose the co-ordinates (u; w)(u; w) as 
x = f(u; w)x = f(u; w), z = wz = w and y = vy = v, under the one-way paraxial 
approximation, assuming that propagation occurs in the ww 
direction, +ww, (i.e. in the +zz with rectangular co-ordinates), 

 
 ©t(u; v; w) = Ft(u; y; w)e¡j¯w;©t(u; v; w) = Ft(u; y; w)e¡j¯w;                        (6) 
 

we obtain the scalar SR wave equation from Eq. (1), [5], [9], 
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where the operators LL and MM  are shown to be, [5],  
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In Eqs. (6) and (7) the field envelope Ft = Ft(u; y; w)Ft = Ft(u; y; w) can be 
either Et = Et(u; y; w)Et = Et(u; y; w) or Ht = Ht(u; y; w)Ht = Ht(u; y; w). A = A(u; w)A = A(u; w), 
B = B(u; w)B = B(u; w), C = C(u; w)C = C(u; w) and D = D(u; w)D = D(u; w) are functions 
of the partial derivatives of  f(u; w)f(u; w), [5], [9], 
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The SR approach allows to designer the flexibility in 

analysis to use any curvature function  x = f(u; w)x = f(u; w) providing 

optimal integrated optic requirements. A standard CN method 
can be easily introduced in the 3D SR-FD-BPM algorithm, 
and for the well-confined waveguide fields TBCs are typically 
applied in a standard way.  

 
 

 
Fig. 4. Schematic diagram of the “S”-curved 3D coupler. 

 

 
Fig. 5. Schematic diagram of the curved 3D “Y”-branch. 

 

 

 
Fig. 6. Staircase approximation forced onto a rectangular grid in the 
longitudinal direction, causes non-physical scattering of the field.  
 
Examples of 3D curved directional couplers design are 

presented to highlight the effectiveness of the SR FD-BPM. A 
symmetrical directional coupler made from two identical and 
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adjacent but spatially separated curved input (I) and output 
(II) waveguides is shown in Fig. 4.  

The curvature function x = f(u; w)x = f(u; w) of an “S” curved 
coupler can be given parametrically or explicitly. A cosine 
type SR geometry was considered in [9], where functions AA, 
BB, CC  and DD, Eq. (10), are easily obtained analytically, 
however, they can be even computed numerically. If the 
curvature function changes slowly with ww, only the function 
CC  varies, thus we can introduce A ' 1; B ' 0; D ' 0A ' 1; B ' 0; D ' 0, which 
is usually the case except for the sharp guide bends. The 
discretisation mesh in the (u; w)(u; w) plane is shown in Fig. 7.  

 

 
 

Fig. 7. Geometry of 3D coupler in SR co-ordinate system.  
 
The total coupling length LcLc is calculated, with both 

rectangular and SR based FD-BPM algorithms, for a 3D 
symmetrical rib waveguide coupler of the cosine type SR 
geometry and with (u; w)(u; w) plane defined as in Fig. 7. Rib 
waveguides parameters are nf = 1nf = 1, nc = 3:44nc = 3:44, ns = 3:4ns = 3:4, 
H = 1¹H = 1¹m, h = 0:5¹h = 0:5¹m, 2d = 3¹2d = 3¹m, ¸ = 1:15¹¸ = 1:15¹m. The total 
coupling of the fundamental TE mode (nrefT E

= 3:41313)(nrefT E
= 3:41313) is 

obtained to be LcTE
= 4826¹LcTE
= 4826¹m, with umax = 3:0¹umax = 3:0¹m and 

umin = 1:8¹umin = 1:8¹m. For TM-mode  (nrefT M
= 3:41161)(nrefT M
= 3:41161)  the total 

coupling length LcT M
= 4769¹LcT M
= 4769¹m is obtained.  

 

 
 

Fig. 8. Evolution of the total power transfer of the fundamental TE-
mode field during the propagation in 3D directional coupler, [9]. 

 
The total power transfer evolution of the fundamental TE-

field, using the H-field formulation of the algorithm, is shown 

in Fig. 8. The almost complete power transfer occurs in the 
coupler region where rib waveguides are closest to each other.  

The SR scheme enables more accurate 3D simulations of 
the total coupling. In the SR scheme the simulation time is 
considerably shorter for the same order of accuracy in 
comparison to the rectangular FD-schemes. This leads to the 
conclusion that the accuracy of the BPM simulations depends 
strongly and mostly on the method used for the FD-
discretisation of the dielectric waveguide boundaries. 

III. CONCLUSION 

Features of the co-ordinate transformation based structure 
related beam propagation method have been addressed and 
reviewed. The main advantage of the SR-based method is the 
exact modelling of the (transverse or/and longitudinal) 
geometry of the structure under analysis. Presented results 
obtained in SR-FD-BPM waveguide and directional coupler 
fundamental mode field simulations demonstrate the 
advantages and generality of SR over standard rectangular 
approach. The SR-FD-BPM method enable design flexibility, 
offering savings in both computational time and memory, thus 
it is an ideally suited method for optoelectronic CAD design. 
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