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Abstract – A general methodology that allows the derivation of 
high accurate finite difference (FD) formulas is presented. The 
methodology is made under a power series expansion of the 
transverse field components of the electromagnetic field. The use 
of derived FD formulas enables highly accurate modelling of 
dielectric interfaces and they have been validated in the electric 
field computations in electrostatics and full-vectorial waveguide 
simulation in photonics. Some illustrative results from full-
vectorial waveguide eigenmode analysis in the frequency domain 
are presented. 
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I. INTRODUCTION 

Amongst numerous techniques developed for solving 
partial differential equations, the finite difference method 
(FDM) is one of the most often-used numerical and simulation 
tool, [1]. FDM is ideally suited and often a favorite approach 
for CAD simulation software in microwaves, photonics 
(lightwave electromagnetics) and optoelectronics, because of 
its simplicity and flexibility. 

In general, FDM technique appears in electromagnetics 
within two conceptually different approaches: the frequency 
domain FDM and the time domain FDM. Standard FDM 
usually refers to time and frequency independent problems 
described by Laplace's and Poisson's equations. FDM in the 
frequency domain is often-used approach in waveguide 
propagation numerical analysis in photonics, namely, as the 
finite difference beam propagation method (FD-BPM). 
Generally, the FD-BPM is a particular FDM technique in the 
frequency domain for the numerical finite difference solution 
of an exact vector Helmholtz's wave equation, [2], [3]. 

Standard FDM and the frequency domain FDM are usually 
implemented in a rectangular co-ordinate system. Certain 
restrictions arise when the FDM is applied to the structures 
with oblique or curved dielectric interfaces, because of the 
inevitable staircase approximation of the boundaries that 
occurs during the finite difference discretisation procedure. 
Many approaches have been proposed to improve the 
efficiency and accuracy of the FDM discretisation of the field 
near the dielectric interfaces. In area of optics engineering and 
research, those approaches are well known as the improved 
FD schemes, [4], [5]. 

In this paper, a new approach, which can be applied in 

standard FDM (electrostatics) and in frequency domain FD-
BPM, in a uniform dielectric region, at a step-like dielectric 
interface of an arbitrary shape and near dielectric corner 
points, is presented. New FD-formulas are derived and used in 
numerical field calculations and BPM simulations. The results 
demonstrate the advantages and generality of the presented 
approach over standard and improved FD-approaches. 

II. OUTLINE OF THE METHOD 

A. Theoretical Foundation – Helmholtz’s wave equation  

In linear and isotropic media, under the assumption that 
propagation is in perfectly insulating and zz invariant media of 
refractive index nn, in terms of the transverse electric field 
vector ~Et = ~Et(x; y; z)~Et = ~Et(x; y; z), Helmholtz's equation has a well 
known form, [2], [3], 
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is replaced as a sum of transverse and longitudinal part, 
r = rt +rzr = rt +rz. The similar equation can be derived for the 
transverse magnetic field vector ~Ht

~Ht. 
The BPM is developed under paraxial approximation of Eq. 

(1), [2], [3]. Assuming that the forward traveling field of 
typical photonics waveguide-based structures has rapid phase 
variations along the guiding axis zz and a slowly-varying 
vector envelope EtEt, one can rewrite Eq. (1) as,  
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is the background propagation constant with n0n0 denotes a 
reference (modal) index. Eq. (2) is known as the paraxial full-
vectorial approximation of Eq. (1). 

In the 2D electrostatic approximation  (k ! 0k ! 0, @=@z = 0@=@z = 0), 
for the transverse vector ~Et = ~Et(x; y)~Et = ~Et(x; y),  Eq. (1) simplifies to 
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where ©t©t can be either vector ~Et
~Et or slowly varying envelope 

vector EtEt. If nn is a continuous function in the transverse plain 
(graded index cases), a differential term in Eq. (4) can be 
calculated analytically. However, if nn is a discontinuous 
function (step-index cases), analytical solution is not possible, 
so there is a serious problem how to obtain consistent 
difference equations. The improved FD formulas approaches, 
[4], [5], take into account boundary conditions for the field 
and its derivatives near the dielectric interfaces. Approach 
presented in this paper improves FD-discretisation near step-
like dielectric interfaces, but in a different, specific way, [6]. 

B. Derivation of FD-formulas, 2nd order of accuracy 

Power series expansions of the electric field components as 
the functions of two Cartesian co-ordinates xx and yy are 
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In linear and isotropic source-free media, in the cases of 2D 

( ) static field (e.g. electrostatics) and TEM field (e.g. 
transmission line field), from Maxwell's equations, 
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we can evaluate power series expansion coefficients in Eqs. 
(5) and (6),  

    
Ex = a0 + a1x + a2y + a3x

2 + a4xy ¡ a3y
2 + ¢ ¢ ¢;Ex = a0 + a1x + a2y + a3x

2 + a4xy ¡ a3y
2 + ¢ ¢ ¢;          (8) 

 

Ey = b0 + a2x¡ a1y +
a4

2
x2 ¡ 2a3xy ¡ a4

2
y2 + ¢ ¢ ¢ :Ey = b0 + a2x¡ a1y +

a4

2
x2 ¡ 2a3xy ¡ a4

2
y2 + ¢ ¢ ¢ :     (9) 

 

 

 
Fig. 1. Square 2D cell placed symmetrically at the interface of two 
dielectric media. Points M1 and M2 are placed close to interface. S0S0 

and CC  orientations are indicated with arrows. 
 

If we assume that the dielectric interface has no charge, by 
applying the integral form of the Gauss' law on the Gaussian 
surface SS  (a contour S0S0 in Fig. 1 is a cross-section of SS  in the 
transverse plane), and by using Eqs. (8) and (9), one can 
derive, [6], 
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By integrating electric field over contour CC  in Fig. 1, the 
similar formula to Eq. (10) can be obtained, [6], 
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When dielectric interface is arbitrary placed between two 

subsequent grid lines, integrations over SS  and CC , Fig. 2, yield 
 

 
Fig. 2. Non-square 2D rectangular cell arbitrary placed at the 

interface of two dielectric media. Points M1 and M2 are placed at two 
subsequent grid lines. 
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In Eqs. (12) and (13) coefficients ai; i = 1; ¢ ¢ ¢ 4ai; i = 1; ¢ ¢ ¢ 4, denote 

first and second derivatives of the field components in points 
M1 and M2, and coefficients pi; qi; ripi; qi; ri  and sisi,  i = 1; 2i = 1; 2, are 
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In Eqs. (14) and (15), h = 4 = h1 + h2h = 4 = h1 + h2 is a distance 

between two subsequent grid lines in the rectangular FD-mesh 
adopted, uniformly spaced both in xx  and yy directions, Fig. 2.  

C. Derivation of FD-formulas, 5th order of accuracy 

Formulas given in Eqs. (10), (11), (12) and (13) are second 
order accurate. Formulas with higher order of accuracy can be 
derived in the similar way, by extending the order of power 
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series in Eqs. (5) and (6). The uniform rectangular grid 
scheme, in (x; y)(x; y) co-ordinate system, used in derivation of the 
finite difference formulas near a dielectric interface, is shown 
in Fig. 3. The field components can be expanded in Eqs. (5) 
and (6) up to the 5th order, over the stencil diagramed in Fig. 
3, resulting in 10 linear algebraic equations. Their solution 
yields FD-formulas for Ex0

Ex0
, Ey0
Ey0

 and their derivatives with 5th 
order of accuracy. In Eqs. (16) to (21) 1st and 2nd derivatives 
are given only. 
 

 
 

Fig. 3. Uniform rectangular scheme used in the finite difference 
formulas derivation. The point M is above the dielectric interface. 
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Similar FD-formulas can be derived for the stencils where 

the point M is set to be below, left and right to the dielectric 
interface. Combining those formulas with Eqs. (10) to (13) 
one can obtain FD formulas with high accuracy. 

III. NUMERICAL RESULTS AND DISCUSSION 

Performed test-computations in electrostatics have 
confirmed that derived finite FD formulas have truncation 
error proportional to the grid size, with the expected 5th order 

of accuracy. Some results obtained in simple FD-BPM test-
simulations of buried waveguides are presented, [6]. 

The cross section of a simple buried dielectric waveguide is 
shown in Fig. 4. The most realistic cases - the full-vectorial 
real-axis and imaginary-axis beam propagation have been 
considered. The full-vectorial FD-BPM is adopted because of 
the presence of both transverse field components. Much 
simpler scalar and polarized formulations of Eq. (1) can not 
lead to the appropriate conclusions. Only TM propagation (E-
field formulation) has been used in simulations. 

 

 
 

Fig. 4. Cross section of the buried waveguide. Dielectric interfaces 
are placed at the middle between two grid lines. 

 
The numerical BPM simulation and the reference (modal) 

index evaluation are highly dependent on the electric field 
discretisation accuracy near the step-index interfaces. The 
approach presented in Section II is valid for the static and 
TEM fields. In TM propagation is Hz = 0Hz = 0, @Ez=@z »= 0@Ez=@z »= 0 
(steady-state field regime), therefore the presented approach 
and derived FD-formulas can be used in TM case as well. 

To avoid the influence of corners on the overall result, [7], 
FD-meshing in the transverse plane have been done by 
placing interfaces at the middle between two grid lines. For 
the field in points A, B, C and D, Fig. 4, the FD-formulas, 
with truncation error of order 3, have been derived and used: 
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In the uniform regions, the standard five-point FD formula 
has been used. A standard Crank-Nicolson algorithm has been 
used to simulate propagation in the zz direction, and due to the 
well-confined waveguide field, transparent boundary 
conditions (TBC), [8], have been introduced at the edges of 
the computational window. For eigenmode solving, the 
imaginary distance BPM algorithm has been applied, [9].  

 
TABLE I 

CALCULATED MODAL INDEX AND CPU RUN-
TIME USED IN IMAGINARY DISTANCE PROPAGATION 

 
mesh size 4[¹m] nref errorrel: CPU time
42£42 0.12500 1.222253 0.000727 00:01
82£82 0.06250 1.275934 0.000231 00:07

122£122 0.04166 1.274600 0.000125 00:22
162£162 0.03125 1.274077 0.000084 00:51
202£202 0.02500 1.271807 0.000063 01:36
242£242 0.02083 1.271645 0.000050 02:39
282£282 0.01785 1.271538 0.000041 05:04
322£322 0.01562 1.271462 0.000036 06:55
362£362 0.01389 1.271405 0.000031 09:50
402£402 0.01250 1.271361 0.000028 11:00

mesh size 4[¹m] nref errorrel: CPU time
42£42 0.12500 1.222253 0.000727 00:01
82£82 0.06250 1.275934 0.000231 00:07

122£122 0.04166 1.274600 0.000125 00:22
162£162 0.03125 1.274077 0.000084 00:51
202£202 0.02500 1.271807 0.000063 01:36
242£242 0.02083 1.271645 0.000050 02:39
282£282 0.01785 1.271538 0.000041 05:04
322£322 0.01562 1.271462 0.000036 06:55
362£362 0.01389 1.271405 0.000031 09:50
402£402 0.01250 1.271361 0.000028 11:00

 

 
Numerical simulations have been performed for two 

different buried waveguide structures: low-index contrast one, 
with n = 1:5n = 1:5 ("r = n2 = 2:25)("r = n2 = 2:25), 2d = 1 ¹2d = 1 ¹m, and the strong-
index contrast waveguide, with n = 3:4n = 3:4 ("r = 11:56)("r = 11:56), 
2d = 0:5 ¹2d = 0:5 ¹m. The wave-length has been kept at ¸ = 1:5 ¹¸ = 1:5 ¹m 
in both cases. BPM step has been chosen to be 4z = 0:1 ¹4z = 0:1 ¹m, 
dimensions of the square computational domain have been 
truncated at Lw = 2:5 ¹Lw = 2:5 ¹m in low, and at Lw = 1:25 ¹Lw = 1:25 ¹m in 
strong-index contrast simulations.  

 

 
 

Fig. 5. Calculated modal index versus mesh size for waveguide 
shown in inset of Figure, strong-index contrast case. 

 
Results for nrefnref  obtained in the imaginary distance BPM 

simulations in low-index contrast case are tabulated in Table 
I, together with data showing the total CPU use (in [min:s]) 
during the C++ code execution on PC (32-bit OS, 2.0 GHz) 

and the relative error computed against the extrapolated value 
for nrefnref  (nref

extr:
= 1:271301nref

extr:
= 1:271301, low-index contrast case, 

nref
extr:

= 2:844921nref
extr:

= 2:844921, strong-index contrast case). The CPU 
data represent the necessity of the accurate FD discretisation, 
since the mesh refinement implies a drastic increase in 
computer run-time. 

The computed data for TM modal index nrefnref  versus 
number of grid lines in the xx (NxNx), and the yy (NyNy) directions, 
strong-index contrast case, are shown in Fig 5. Comparison 
with results obtained by using method published in [4],  Fig. 
5, shows that the present discretisation model demonstrates 
the faster convergence as the grid size is reduced. This result 
has been expected, as a consequence of the intrinsic property 
of the presented methodology enabling the true two-
dimensional FD-discretising of the field near the dielectric  
interfaces and corners.  

IV. CONCLUSION 

The approach for finite difference treatment of dielectric 
interfaces has been presented. FD-formulas have been derived 
and applied to the electromagnetic field analysis and BPM 
simulations in photonics. Numerical simulations have been 
carried out to solve eigenmodes of TM mode field via the 
imaginary distance BPM for buried waveguide in the 
rectangular co-ordinate system, and results have been 
compared with those obtained from simulations based on 
previously reported improved FD algorithms. The flexibility 
of the approach, efficiency and accuracy of the derived FD-
formulas recommends them for use in photonic CAD design. 
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