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Abstract – The paper presents a development of a Markov’s 
chains of the work of quasioptimal algorithm for multiuser 
detection. Through it identifies: functional accuracy of the 
algorithm-respectively the lower limit of the error probability in 
a channel with Rayleigh fading and its computational 
complexity. Program models are realized in MATLAB, in order 
to research the algorithm performance and their parameters. 
Graphic presentations from the measurements are given to prove 
the exactness of the analytical formulas. 
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I. INTRODUCTION 

CDMA is an efficient method for sharing a mobile radio 
channel. The noise resistance of the system decreases due to 
internal system interference – MUI (multi user interference). 
The correlation receiver is optimal when no MUI exists. The 
multi user detection (MUD) is used to minimize the influence 
of the MUI [1].  

The MUD receiver, based on the maximum likelihood 
criteria (МL) [1], gives an optimal solution and checks all 
possible combinations of transmitted symbols. The number of 
the calculations grows exponentially with the number of the 
active users, which is a disadvantage of ML MUD. There are 
many suggested methods and algorithms for suboptimal 
receiving, decreasing the needed number of detection 
calculations. They are compromise between calculation 
complexity and quality parameters of the receiver. [8,9].  

The research is focused on the parameters and the 
possibilities of the quasioptimal algorithm of MUD [8,9], 
based on the serial search. The fast-response of the algorithm 
is due to strong criteria of search discontinuation and selection 
of start point of the optimization after the single correlation 
receiving.  

A diagram of states and Markov’s chains is used for 
modeling the process of the algorithm. The result of the 
analysis is the error probability of the algorithm, the 
dependency of its accuracy from the number of iterations and 
users. 

II. MUD MODEL IN SYNCRONIOUS CDMA 
SYSTEM  

A block diagram of the system is shown on figure 1. The 
signal processing is made in baseband.  

 

1E

d1.c1(t) 

ck(t)

dK..cK(t)

c1(t)

d1 

dk 

r(t) 

n(t) 

kE
Kj

Ke θα

1
1

je θα

Flat Rayleigh fading 

 
 
 

∑
 

ck(t) 

c1(t) 

      Tb  
   ∫  
      0 

      Tb  
   ∫  
      0 

M
U

D
 

A
l g

or
it

hm
 

       

       

1d̂

ˆ
Kd

Communication channel 

User 1 

User K 

z1 

zK 

1

ˆ
Fd

ˆ
KFd

 
Fig. 1. Block diagram of MUD 

 
The model is described in details in [8]. Here K users are 

using synchronous transition with direct spread spectrum – 
DSS and 2PSK modulation. 

After applying criteria for maximum of aposterior 
probability (MAP), optimal MUI is achieved. A logarithmic 
function of likelihood is presented in matrix form [1]: 

( ) 2 ( )Ψ = ℜT * T *d d EARA Ed - d EA z           (1). 

Base components in (1) are: 
1 2[ , ,..., ]T

Kd d d=d  - a matrix, containing data, transmitted from  
user k; 

1 2
1 2[ , ,...., ]Kj j j

Kdiag e e eθ θ θα α α=A - a diagonal matrix with 
complex coefficients of transmission channel for the  
corresponding user. The amplitudes are with Rayleigh 
distribution. The phase shifting is with normal distribution in 
[0, 2π]. The channels of all users are statistically independent; 

1 2, ,...., Kdiag E E E⎡ ⎤= ⎣ ⎦E  - a diagonal matrix. kE is the 

symbol energy of user k;  
1 2[ ( ), ( ),..., ( )]Kc t c t c t=c  - a matrix, where every row is a 

pseudorandom binary sequence (PBS) for the corresponding 
user;  
R - a cross-correlation KxK matrix, which coefficients are the  
values of the normalized cross-correlation functions of PBS.  

1 2[ , ,..., ]T
Kn n n=n  - Gaussian noise after the correlator, with 

the covariance matrix 0.5n oN=R R .  
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III. THEORETICAL MODEL OF WORK OF THE MUD 
ALGORITHM BASED ON THE DIAGRAM OF STATES AND 

MARKOV’S CHAINS 

For simplicity, we will consider the following conditions: 
1. The communication channels are without additive 

white Gaussian noise. This assumption is made in 
order to calculate the error probability rate of the 
algorithm caused by its quasioptimal solution; 

2. The power of the received signals from all users is 
equal; 

3. Bipolar code sequences with uniform distribution of 
the values ±1 are used for DSS; 

4. The process gain is equal to the length of the random 
sequence N, when it is sufficiently long.  

The work of the algorithm could be described with a cell 
diagram, where the value of the target function ( )Ψ d  is 
included.  

Figure 2 shows a possible cell diagram for K=3. Each 
junction represents a data vector d located away from the 
optimal point d0 with certain code distance. The problem is to 
find the minimum of Ψ(d).  

For a given initial vector (point) dl-1 the algorithm goes 
through the vector space with Hamming distance Hd=1 with 
consecutive changes of each element of the vector [8]. For 
each vector from that space, Ψ(d) is calculated. This 
represents a step of the algorithm to find the next point which 
is closer to transmitted vector d0.  

The solution of the algorithm for the l-th iteration is 
calculated with: 

[ ]{ }arg min ( )
∈

= Ψ
d

l d M
d d и     ( ){ }1: , 1d d lM d H −= =d d         (2). 

 
Fig. 2. Cell diagram for K=3 

One step of iteration is inverting the value of one element 
of vector dl-1. The new vector dl is defined. The attempt is 
successful when: 

{ }[ ( ) ( )] 0max
∈

Ψ −Ψ >
d

l-1 l
d M

d d  и 1 0 0( , ) ( , )d l d lH d d H d d− >       (3). 

If the algorithm is in point dl-1, during the iteration, the 
following hypotheses are possible:  

1. H+1 - step forward – A vector dl is found, which code 
distance to the optimal point d0 is less than the one to 
dl-1. The hypothesis is true when the below conditions 
are satisfied: 

{ }[ ( ) ( )] 0max
∈

Ψ −Ψ >
d

l-1 l
d M

d d  и 1 0 0( , ) ( , )d l d lH d d H d d− > ; 

2. H-1 - step backward – The vector dl has longer code 
distance than dl-1. The necessary conditions are: 

 { }[ ( ) ( )] 0max
∈

Ψ −Ψ >
d

l-1 l
d M

d d  и 1 0 0( , ) ( , )d l d lH d d H d d− < ; 

3. H0 - an extremum is reached – dl=dl-1, 
[ ( ) ( )] 0Ψ −Ψ ≤l -1 ld d  for ∈ dd M . 

The extremum can be local, when the cost function is not 
unimodal. The global extremum corresponds to the 
transmitted vector. The local extremum may not be the same 
as the global extremum d0, because the algorithm is 
quasioptimal. If the impact of AWGN is ignored, the  
algorithm fully compensates the cross-channel interference if 
the point dl-1 has a code distance 1 to the global extremum d0, 
and then with the next iteration the global extremum would be 
found.  

The algorithm performance, error decision probability and 
the minimal limit error probability with defined number of 
operations can be found with the help of the probability theory.  

The probability to get to the global extremum can be 
specified by describing the algorithm by Markov chain. 
During iteration the probability for transition from one point 
to another can be described by directed graph shown on 
Figure 3.  
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Fig. 3. Directed graph 

 
Every point corresponds to a junction and is located on 

fixed code distance from the global extremum. The number of 
the junction is equal to the number of the users K+1. Junction 
0 represents the transmitted vector, which is the global 
extremum d0. The probability p10 of passing through junction 
1 to 0 is one. If there is no receiving error the algorithm will 
begin the search with 0 code distance and will remain in this 
junction – this is the probability p00=1. Due to this condition 
the Markov chain is reducible. There is one more reducible 
state when the algorithm reaches a local extremum that is 
different from the global extremum. On figure 3 this state is 
marked with index K+1 – „Wrong exit”. The algorithm will 
cancel the search and the received vector is with errors. 
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The Markov transition matrix for iteration of the algorithm 
is described with (4). 

The transition probabilities can be defined, if the 
distribution of the values of the target function is known. Due 
to the great number of random variables in the matrix it is 
suggested to operate with equivalent random variable y, which 
probability density is fy(y). It is the difference between the 
values of the target function dl-1(k) and dl(k-1), where the 
argument is the code distance to d0 and: 

( ) ( ( )) ( ( 1))ly k k k= Ψ −Ψ −l -1 ld d           (5). 

Once (5) is converted and the code distance between the 
starting point for an iteration and transmitted vector 
is     Hd(dl-1,d0)=k , (6) is obtained:  

2

1

1

( ) 2( 2 )
k

l i
i

y k z χ
−

=

= −∑           (6),  

where χ is a random variable with 2χ  distribution and 
variance σ2 = 1 comes from the fact that the channel has 
Rayleigh distribution of transmission coefficient. Random 
variable zi is: i m n mnz rα α= , αm,n takes values ±2 and discrete 
uniform distribution – depends on the transmitted symbols.  
Other random variable is: 

[Re( ) Re( ) Im( ) Im( )]mn mn m n m nr R C C C C= + , 

where distribution of values of cross correlation function Rmn 
can be approximated with normal distribution with variance 
σ2=1/N . The real part Re( )mC  is with normal distribution μ=0 
and mathematical expectation σ2=0.5. 

Analytical determination of the density distribution of yl(k) 
fy(y(k)) is not an easy task, so computer modeling with method 
Monte Carlo is proposed. fy distributions are independent and 
identical for each point, which is on the same code distance 
from d0.  

Correct decision for the l-th iteration will occur 
(Hypothesis H+), if both of the following conditions are 
observed: 

1. At least one of the k points with code distance       
0 1 0( , ) ( , )d l d lH d d H d d−<  satisfies [ ( ) ( )] 0Ψ −Ψ >l -1 ld d ; 

2. At least one of total K-k points with 
0 1 0( , ) ( , )d l d lH d d H d d−>  satisfies the condition 

[ ( ) ( )] 0Ψ −Ψ <l -1 ld d .  
The probability of execution of the first and second 

condition and their independence for iteration (probability of 
correct decision (Hypothesis H+)) is: 

0 0

1 ( ( )) 1 ( ( 1))
k K k

k y yPd f y k dy f y k dy
−

−∞ −∞

⎧ ⎫⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪⎪ ⎪= − − +⎨ ⎬⎨ ⎬⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭
∫ ∫            (7). 

The probability for not finding a better point during next 
iteration and the end of the search algorithm (Hypothesis H0 
(an extremum is reached)) depends on the distribution of the 
random variable [ ( ) ( )] 0Ψ −Ψ ≤l -1 ld d  where ∈ dd M . In 
iteration, k attempts reduce the code distance and K-k attempts 
increase the code distance. 

The probability algorithm remains at the same point and 
the search end is determined by: 

0 0

( ( )) ( ( 1))
k K k

k y yPo f y k dy f y k dy
−

−∞ −∞

⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
∫ ∫ for  k= 1...K     (8). 

 
The algorithm’s probability to make a mistake - to differ 

from the optimal point, hypothesis H-1, is equal to: 
 

1k k kPerr Po Pd= − −           (9). 
 

Once the transition probabilities in the diagram of figure 3 
are known, the elements of the matrix [Pm] are determined 
by: 
p00 = p10 =1, , 1k k kp Pd− = , , 1k K kp Po+ = , , 1k k kp Perr+ =  for k 
= 2..K-1, , 1K K Kp Pd− = , , 1K K Kp Po+ = , за k = K, 

1, 1 1K Kp + + = . 

IV. FUNCTIONAL PRECISION OF THE ALGORITHM 

The probability, after detection with hard decision, for the 
algorithm to begin a search from an initial vector with code 
distance k is given by [8]:  

( )

( )

!( ) 0.5 0.5 / 1 ( 1) / .
( )! !

0.5 0.5 / 1 ( 1) /

k

K

K k

KP k K N
K k k

K N
−

= − + −
−

+ + −

        (10). 

The vector [ ]KP , arranged by the ( )KP k  for k=0...K, is the 
initial vector of the initial states of the Markov Chain. The 
vector [ ]LP , with probabilities of occurrence of k fold error 
(k=0...K) after L number of iterations, is determined by the 
matrix equation: 

[ ] [ ][ ]L
L K MP P P=             (11), 

The probability of starting the algorithm from the k-th 
code distance is defined by (10). The error probability of the 
algorithm after iteration is determined by two hypotheses. The 
first hypothesis is that the algorithm finds a vector with 
smaller code distance. The second one is to end the search – 
Wrong exit. 

The matrix with error probability after the L number of 
iterations is: 

[ ] [ ] [ ]err L LP P Po= +                 [ ] [ (:, 2) ']Po Pu K= +   

( )[ ] [ ][ ]L
K MPu diag P P=                          (12). 

The vector [ ]Po  is composed by elements of the last 
column of the matrix[ ]Pu . Due to the independence of the 
communication channels, the average probability of error per 
bit after the number L of iterations of the algorithm can be 
calculated with:  

  
1

( )
L

L

e err
k

kP p k
K=

=∑           (13). 
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V. RESULTS OF SIMULATION 

For the purposes of the research a model program in 
MATLAB, which finds the distribution of random variable y 
using the Monte Carlo method, is created. 
 

 
Fig. 4. Pe depending on L and K 

 
Equation from formula (6) is used and with (4), (8), (9) 

and (12) the dependency of the probability of error per bit, 
depending on the number of iterations L with the number of 
users K as a parameter, is defined. The results are obtained for 
DS-CDMA system with transmission and reception of K 
number of users working simultaneously. The system operates 
in an environment with multipart slow Rayleigh fading. The 
results are shown on Figure 4. The red curves are theoretical 
estimates - from formula (6) and the blue dots (star *) are the 
results of the simulation. 

The probability of error per bit, depending on the 
functional accuracy of the quasioptimal algorithm is shown in 
figure 5. The dependence is the number of active users K. 

 

 
Fig. 5. Pe depending on K  

 

VI. CONCLUSION 

The paper presents a development of a Markov’s chains 
of the work of quasioptimal algorithm for multiuser detection. 
Through it identifies: functional accuracy of the algorithm-
respectively the lower limit of the error probability in a 
channel with Rayleigh fading and its computational 
complexity. Program models are realized in MATLAB, in 
order to research the algorithm performance and their 
parameters. Graphic presentations from the measurements are 
given to prove the exactness of the analytical formulas. 

With this approach of modeling the algorithm of MUD 
with a Markov chains can be determined the average number 
of iterations needed to reach the extremum. 

REFERENCES 

 
[1] S. Verdú, Multiuser Detection. New York: Cambridge 
Univ. Press,1998. 
[2] R. Lupas and S. Verd´u, “Linear multiuser detectors for 
synchronous code-division multiple-access channels,” IEEE 
Trans. Inform. Theory, vol. 35, pp. 123-136, Jan. 1989. 
[3] Z. Xie, R. Short, and C. Rushforth, “A family of 
suboptimum detectors for coherent multiuser 
communications,” IEEE Journal on Selected Areas in 
Communications, vol. 8, pp. 683-690, May 1990 
[4] C. Ergun and K. Hacioglu, “Multiuser detection using a 
genetic algorithm in CDMA communications systems,” IEEE 
Trans. Commun., vol. 48, pp. 1374–1383, Aug. 2000. 
[5] M. J. Juntti, T. Schl¨osser, and J. O. Lilleberg, “Genetic 
algorithms for multiuser detection in synchronous CDMA,” in 
IEEE International Symposium on Information Theory – 
ISIT’97, (Ulm, Germany), p. 492, 1997. 
[6] K. Yen and L. Hanzo, “Hybrid genetic algorithm based 
multi-user detection schemes for synchronous CDMA 
systems,” in Proceedings of the IEEE Vehicular Technology 
Conference (VTC), (Tokyo, Japan), May 15-18,2000. 
[7] Peng Hui Tan, Lars K. Rasmussen, Multiuser Detection in 
CDMA—A Comparison of Relaxations, Exact, and Heuristic 
Search Methods, IEEE TR. WIRELESS COMM., VOL. 3, N 5, 
SEPT. 2004 
[8] Iliev I. G., Nedelchev M. V., Performance Analysis of a 
suboptimal multiuser detection algorithm, ICEST 2007, 
Macedonia, pp.531 - 534  
[9] Iliev I. G., Nedelchev M. V., Antenna Diversity Multhi 
User Detection Algotithm for Synchronous CDMA System, 
ICEST 2009, V. Tarnovo, Proceedings of Papers, pp.67-71 
 

0 5 10 15 20 25 30

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

Number of iterations L 

Pe

N=31

K=30

K=5

5 10 15 20 25 30
10 -7 

10 -6 

10 -5 

Users K

Pe
N=31 

172


