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Abstract – An algorithm for fast complex Hadamard 

transform is presented. The complex Hadamard matrices are 
factorized with set of sparse matrices on the base of classical 
Cooley-Tukey algorithm and obtained signal flow graphs of 
order 4, 8 and 16 are shown. The developed algorithm is 
simulated on Matlab 6.5 environment and the computational 
complexity is calculated.  

Keywords – digital signal processing, Complex Hadamard 
Transform, fast orthogonal transforms. 

I. INTRODUCTION 

Discrete orthogonal (unitary) transforms [1], [2] have found 
applications in many areas of N-dimensional signal 
processing, spectral analysis, pattern recognition, digital 
coding, computational mathematic and etc. Dimensionality 
reduction in computation is a major signal processing 
application. Stated simply, these transform coefficients that 
are small may be excluded from processing operations, such 
as filtering, without much loss in processing accuracy. The 
discrete integer Walsh Hadamard Transform (WHT) is a fairly 
simple orthogonal transform and is an example of a 
generalized class of Fourier transforms [3]. The idea of using 
complex, rather than integer transforms matrices for spectral 
processing, analysis and watermarking has been shown in [4], 
[5], [6] and [7]. From the Complex Hadamard Transform 
(CHT), several complex decisions diagrams are derived and 
analysis of more general CHT properties for 1D and 2D 
signals are investigated [8]. 

 In this paper an algorithm for Fast Complex Hadamard 
Transform (FCHT) is developed, using factorization of basis 
CHT matrices by the sparse matrices and the signal flow 
graphs illustrating the computation of orders 4, 8 and 16 are 
shown. The obtained results are similar to factorization and 
flow graphs of real Fast Hadamard Transform (FHT), which 
leads to considerable decreasing of mathematical 
computations. The difference between FCHT and FHT is 
entirely into the last iteration, which include the all complex 
operations. Comparison with the presented in [9] fast 
conjugate symmetric sequence-ordered Complex Hadamard 
Transform is made and the results are given.  

The developed FCHT algorithm is simulated on Matlab 6.5 
environment and it requires Nlog.N 2  additions or 

subtractions and N/2 complex operations in the last iteration. 

II. MATHEMATICAL DESCRIPTION 

The coefficients of Complex Hadamard Transform matrix 
[CHN] with dimension N by N can be represented by the 
following equations [7], [8]: 
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is the sign function. Here ⎣ ⎦.  is an operator, which 
represents the integer part of the result, obtained after the 
division. 

From the equations (1) and (2) the CHT basis matrix of 
order 2n and complex conjugated matrix calculated for n=2 
and u ,v = 1,2,3,4 are presented as follows: 
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The basis complex Hadamard matrices of order 2n (n>2) 
can be received as the Kroneker product of a number of 
identical “core” matrices of order 2n-1 in the following way: 
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Using the basic forward one-dimensional complex 
Hadamard transform for n=2 from the input signal vector 

[ ]4321 ,,, aaaaA =
ρ

, the output spectral vector - 

[ ]4321 ,,, bbbbB =
ρ

 is received by the equations [7]: 
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The complex Hadamard matrix [ ]4CH  can be decomposed 
of series of two sparse matrixes of order 4: 
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 where [ ]nI2  is the identity matrix and decomposition can 
be written by the following: 

 [ ] [ ][ ]444 . CHICHJCH = . (8) 

The first matrix [ ]4CHI  is presented with a first sub-graph 
and the second matrix [ ]4CHJ  is presented with a second one 
in the generalized CHT signal flow graph, shown on Fig.1: 

 
Fig. 1. Fast CHT signal flow graph of order 4. 

The third sub-graph presents reordering of spectrum 
elements from equation (5). Multipliers are +1 and -1 as 
indicated by the black and red solid lines in real parts of sub-
graphs and +j and –j as indicated by the black and red dashed 
lines in complex parts, respectively. 

Using this approach the fast CHT algorithm and the 
corresponding signal flow graph of order 8 can be constructed 
in the following way:  

- record the basic foreword complex Hadamard 
transform as linear system of 8 unknown values: 
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- decomposition of complex Hadamard matrix [ ]8CH  by 
the series of three sparse matrixes of order 8: 

 [ ] [ ][ ] [ ]″′= 8888 .. CHICHICHJCH , (10) 

[ ] [ ] [ ]
[ ] [ ]⎥⎦

⎤
⎢
⎣

⎡
−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=″

44

44
8

10001000
01000100
00100010
00010001
10001000
01000100
00100010
00010001

II
II

CHI  (11) 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=′

10100000
01010000
10100000
01010000
00001010
00000101
00001010
00000101

8CHI = ⎥
⎦

⎤
⎢
⎣

⎡
][0

0][

4

4

CHI
CHI

(12) 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=

j

j

j

j

CHJ

1000000
00110000

1000000
00110000
0000100

00000011
0000100
00000011

8 = ⎥
⎦

⎤
⎢
⎣

⎡
][0

0][

4

4

CHJ
CHJ

(13) 

where: [ ]″8CHI , [ ]′8CHI and [ ]8CHJ  are real and complex 
factorization sparse matrices; 

- construction of signal flow graph for complex 
Hadamard transform of order 8, which is shown on 
Fig.2; 

 
Fig. 2. Fast CHT signal flow graph of order 8. 

Decompositions, shown in (8) and (10) can be generalized 
using Cooley-Tukey algorithm ([2], [3]) for the real [CHI] 
matrices factorization and multiplying with the complex 
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matrix [CHJ]. The complex Hadamard matrix [ ]NCH  of order 
N=2n can be presented by the equation: 

 [ ] [ ] [ ]∏
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rNN NGCHJCH , (14) 

where: Nn 2log= , [ ])(NGr  are the sparse matrices with 
two non-zero elements in each row, which have the following 
block-diagonal structure: 
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The sub-matrices [ ])(rA  are defined as Kroneker product of 
the matrices: 

 [ ] [ ] [ ]rIH)r(A 22 ⊗=  , (16) 

where: [ ]rI2  is identity matrix of size rr x22 , and [ ]2H  is real 
basic Hadamard matrix of order 2.  

Using definitions in (7) and equations (14)-(16) the fast 
CHT for N-components vector [ ]NN aaaaA ,,.....,, 121 −=

ρ
 can be 

presented in the following way: 

 [ ][ ][ ] [ ]ANGNGNGCHJB nN

ρρ
.)(......)(.)(. 121 −= , (17) 

or as a sequence of elementary transformations: 
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where: 121 ,...., −nCCC
ρρρ

 is the sequence of “intermediated” 
vector-iterations, which are received by the transformations 
with sparse matrices. 

As a sample, from equation (14) for [ ]8CH  factorization of 
order N=8 are obtained: 
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The received from (19) equations are completely identical 
with the equations (10)-(13). The developed fast complex 
Hadamard transform (FCHT) algorithm can be illustrated by 
the signal flow graph, shown on Fig.2.  

The described algorithm can be used for the reverse 
complex Hadamard transformation. The flow graphs are 
identical and all output components must be divided on the N. 

III. Experimental Results 

The developed FCHT algorithm is simulated on Matlab 6.5 
environment. The basis complex Hadamard matrices are 
calculated using equation (4) and factorization sparse matrices 
using equation (14) for orders N=4, 8, 16, 32, 64, 128, 256 
and 512 are constructed. The received results are identical, 
which indicates that proposed factorization is correct. The 
FCHT algorithm is similar with the real FHT algorithm, 
which leads to considerable decreasing of mathematical 
computations. The difference between FCHT and FHT is 
entirely into the last iteration, which includes all complex 
operations. 

The developed FCHT algorithm requires Nlog.N 2  
additions or subtractions and N/2 complex operations in the 
last iteration. The presented in [9] fast conjugate symmetric 
sequence-ordered Complex Hadamard Transform algorithm 
requires Nlog.N 2  additions or subtractions, but the complex 
operations are 3 times more than FCHT.  

As a sample the obtained signal flow graph of order 16 is 
given on the Fig.3. 

Using the matrix descriptions for the 2D Complex 
Hadamard Transform in [8], the 2D FCHT algorithm can be 
realized by applying of 1D FCHT on the rows of the input 
image matrix and after then applying the 1D FCHT on the 
columns of the obtained matrix. The calculation complexity of 
2D FCHT can be evaluated from the complexity of 1D FCHT 
and require: Nlog.N. 2

22  additions or subtractions and 2N  
complex operations. 

IV. CONCLUSION 

A class of complex Hadamard matrix is presented. An 
algorithm for fast CHT matrices calculation is developed on 
the base of classical Cooley-Tukey algorithm. Additional 
factorization matrices for the complex calculations are 
constructed. 

The main advantages of the developed FCHT algorithm 
are: 

- minimizing of complex calculations; 
- the input components of each iteration can be 

substituted   with the resulting ones, which reduces the  
used memory only for calculated N components; 

- the 2D FCHT algorithm is based on the described 1D 
FCHT algorithm and is calculated by the same way as 
a real 2D FHT. 

The presented fast ordered Complex Hadamard Transform 
can be used in digital signal processing for spectral analysis, 
pattern recognition, digital watermarking, transformation, 
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coding and transmission of one-dimensional and two-
dimensional signals. 
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Fig. 3. Fast CHT signal flow graph of order 16.
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