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Abstract – In this paper we present a technique for 
thresholding wavelet coefficients based on multiscale product 
analysis. We apply experiments both on noise-free and noisy 
signals; noise is signal dependent. Experimental results show that 
the noise is effectively removed.  
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I. INTRODUCTION 

Lately, there are many developed methods for image noise 
filtration in a transformation domain. In the last decade the 
stress on researches in this field is put on the signal processing 
in the wavelet domain. Wavelet transforms are multiresolution 
representations of signals and images. They decompose 
signals and images into multiscale details. 

The reason of using the wavelet transform for denoising 
purposes is that the basis functions used in wavelet transforms 
are locally supported; they are nonzero only over part of the 
domain represented. Hence, adequately chosen wavelet basis 
groups the coefficients in two groups – one with a few 
coefficients with high SNR, and other with a lot of 
coefficients with low SNR. In addition, the signal power at 
large scales corresponds to that at low frequencies in the 
Fourier transform; the power at small scales corresponds to 
that at high frequencies in the Fourier transform.  

In case of white Gaussian noise, the noise level is same 
through whole signal and for all the wavelet coefficients, 
independently on the signal. Hence, a well-estimated global 
threshold shrinks all the coefficients for an equal portion and 
removes the noise. But, in some signals, like nuclear medicine 
(NM) images, the noise level is proportional to the local signal 
intensity. Obviously, denoising them by using a global 
threshold is not the best solution. 

In this paper we propose removing signal noise by 
exploiting wavelet multilevel correlation: the small scale data 
is passed at positions where the correlation is large and 
suppressed if the correlation is small. The paper is organized 
as follows. Section II briefly outlines wavelet theory. Section 
III discusses how to analyze the signal through the scale. 
Section IV verifies the validity of our approach on 
deterministic signals contaminated with signal dependent 
noise. At the end, Section V concludes the paper.  

 
 

II. DISCRETE WAVELET SHRINKAGE METHOD 

The Discrete Wavelet Transform (DWT) decomposes a 
signal into a set of orthogonal components describing the 
signal variation across the scale [1]. The orthogonal 
components are generated by dilations and translations of a 
prototype function ψ  called mother wavelet. 

In analogy with other function expansions, a function f may 
be written for each discrete coordinate t as a sum of a wavelet 
expansion up to certain scale J plus a residual term, that is: 
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where ψjk is component obtained by dilation and translation of 
the mother wavelet. The approximation coefficients cJk 
contain the signal identity while the detail coefficients djk 
likely contain noise and need to be processed in order to 
remove the noise.  

The most popular form of conventional wavelet-based 
signal filtering [1], can be expressed by: 
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where s is noise-free signal, n is noise, s* is filtered signal, A(k) 
and D(k) are approximation and detail coefficients at level k, 
respectively, f is a function of the modified detail and 
approximation coefficients, .× is element-by-element multi-
plying and 
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are weighting coefficients of the corresponding detail 
coefficients at level k. 

In case of conventional hard threshold filtering the 
weighting coefficients are 
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while for the soft threshold filtering they are 
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where τ(k) is user specified threshold for the k-th level details. 
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III. MULTISCALE CORRELATION 

A. Algorithm 
A noisy signal x can be expressed as a sum of noise-free 

signal s and noise n: 

 x = s + n. (6) 

An orthogonal wavelet transformation of the noisy input 
yields an equivalent model in each wavelet sub-band: 

 ω = β + ν. (7) 

where β are noise-free signal wavelet coefficients and ν are 
noise wavelet coefficients. 

For a given noise-free signal coefficient βp (at position p) in 
a reference to a certain threshold τp, two hypotheses can be 
defined [2]: 

ppH τω ≤:0 , the signal of interest is absent (in the given 
coefficient); 

ppH τω >:1 , the signal of interest is present (in the given 
coefficient). 

We want to estimate the level of probability that the 
wavelet coefficient pω represents signal of interest. For this 
aim we want to exploit the correlation between the 
coefficients at the neighboring levels. This can be done by 
multiplying small scale coefficients and the coefficients 
derived from the larger scale, after the larger scale coefficients 
are shifted first. Hence, we define a shrinkage rule for 
estimating the coefficient pβ̂ : 
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,4}{length k=λ k – decomposition level. 

The coefficients λ(k) in (10) are derived from the coarser 
level coefficients ω(k+1) and in this way we ensure that 
(shifted) maximums from the coarser level correspond to 
adequate spikes from the finer level. In addition, since the 
product coefficients ω(k)λ(k) in (9) have much bigger energy 
than the finer level coefficients ω(k), the coefficients 

ω(k)λ(k) are normalized. The criterion at (9) keeps a coefficient 
if it contains signal of interest or reduces it if not. 
 
B. Analysis 

If we consider signal decomposition in wavelet domain, 
starting from the finest level and moving through the scale, 
the signal energy increases and its shape slightly changes; the 
signal portions at the coarser scales contain more the signal 
identity than the portions at the finer scales. We want to use 
direct spatial correlations of the wavelet transform at different 
scales to identify the edges: the small scale data is passed at 
positions where the correlation is large and suppressed if the 
correlation is small. But, a small scale spike that appears at 
certain position stretches (dilates) in the next scale (coarser 
level), i.e. moves slightly around the considered positions in 
the next larger scale. This is shown by a wavelet 
decomposition of the deterministic noise-free signal shown in 
Fig. 1. The signal decompositions at different levels are 
carried out by using different wavelets and the results are 
shown in Figs. 2–5. Fig. 2 shows the signal decomposition 
carried out by wavelet sym4. The spikes at positions 77 and 
78 at the first level are stretched in the second level, i.e. they 
are shifted to the positions 76 and 79. Similarly, the spikes at 
497 and 498 (517 and 518) are shifted to positions 496 and 
499 (516 and 519). Same results are obtained when other 
wavelets are used. 

In addition, when wavelet coefficients from neighboring 
(k and k+1) levels are compared, the large level (k+1) 
coefficients are shifted for k×(L−1) samples, where L is the 
filter length. 
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Fig. 1. Deterministic test signal. 
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Fig. 2. Wavelet coefficients from 1st and 2nd level obtained by 

decomposing the signal with sym4 wavelet. 
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This correlation can be used to eliminate noise in the noisy 
signal. But, this filtering cannot be carried out by simple 
multiplying of the coefficients from the neighboring levels. 
We propose all the small scale coefficients to multiply by 
maximums in adequate large scale regions as it is shown in 
next section. 

IV. EXPERIMENTS 

In this Section, our experimental results are explained. The 
experiments are made with the noisy signal given in Fig. 6. 
The signal contains Poisson noise. It can be noticed in Fig 6 
that there are signal information around the signal levels 
changes that should be preserved while filtering.  

The results of filtering by using the proposed algorithm are 
shown in Figs. 7−9. It can be visually seen that the noise 
energy in the filtered signal is much lower than in the noisy 

signal. The filtered coefficients preserve the signal 
information (big spikes) and the small spikes are eliminated. 

In order to quantitatively compare the proposed method to 
some known wavelet based methods, we use the mean 
squared error of the remained noise in the filtrated signal s1 
(normalized to the energy of the noise free signal s) as a 
measure: 
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where N is the signal length. 
The results of filtering of signal are shown in Table 1. The 

signal is reconstructed from the first and second level filtrated 
detail coefficients and second level approximation 
coefficients. The table shows that when the proposed 
approach is applied, the noise energy is weaker compared to 
filtering by Donoho’s universal threshold [3, 4] and multiscale 
product algorithm [5].  
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  Fig. 4. Wavelet coefficients from 1st, 2nd and 3th level obtained by 

decomposing the signal with sym3 wavelet. 
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Fig. 3. Wavelet coefficients from 1st and 2nd level obtained by 

decomposing the signal with coif5 wavelet. 
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  Fig. 5. Wavelet coefficients from 3th and 4th level obtained by 

decomposing the signal with coif5 wavelet. 
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Fig. 6. Signal with noise. 

MSE (Fig. 6) 
Wavelet coif5 db4 sym3 

Level 1 2 1 2 1 2 
Proposed 0.1446 0.1154 0.1419 0.1135 0.1382 0.1078
Multiscale 0.2703 0.3579 0.2041 0.2985 0.2411 0.4004
Universal 0.9077 1.8941 1.5997 2.0458 1.1990 4.1028

Table 1. Comparison of the proposed algorithm with other 
methods. 
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V. CONCLUSION 

In this paper we propose removing signal noise by 
exploiting wavelet multilevel correlation: the small scale data 
is passed at positions where the correlation is large and 
suppressed if the correlation is small. Experimental results 
show that the noise is effectively removed.  
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Fig. 8. Wavelet noised coefficients and thresholded coefficients at 
second level obtained with coif5. 
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Fig. 7. Wavelet noised coefficients and thresholded coefficients at 
first level obtained with coif5. 
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Fig. 9. Noise-free signal and denoised signal by using wavelet 
decomposition in two levels with coif5. 

186


