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Abstract – In this paper an optimization of the software 
method for Direct Digital Synthesis of signals, based on series 
approximation of the sine wave is discussed. Three known sine-
wave approximations are compared considering the spurious 
free dynamic range of the spectrum. An optimization of the 
polynomial approximation is proposed and discussed here. The 
signal synthesis requires reduced number of mathematical 
operations by taking advantage of the sine wave symmetry. 
Additional increase of the dynamic range is achieved by genetic 
algorithm optimization of the polynomial coefficients. 
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I. INTRODUCTION 

The Direct Digital Synthesis (DDS) is a technique for 
generating a high quality sine wave through a digitally defined 
frequency. The software implementation of DDS (SDDS) 
based on digital signal processor has two main versions – 
using ROM table of the sine wave, and series approximation 
of the sine wave.  

The first one is most common and faster, however, due to 
restricted ROM table size, the spurious free dynamic range 
(SFDR) D of the spectrum of the synthesized signal, which is 
measure of quality, is also limited [1]. 

The advantage of the SDDS exploiting series 
approximation is elimination of the ROM table. A drawback 
however is the bigger number of the required mathematical 
operations, which results in lower sampling frequency. 

There are several basic sine wave polynomial 
approximations, which can be used in DDS [2]. 

Analog Devices Inc. [3] suggested a 5-th order polynomial 
approximation of the sine wave in the range [0, π/2]. The 
dynamic range D is around 105 dB. The number of operations 
is 5 multiplications and 4 addition/subtractions. 

More recently, methods combining the use of smaller tables 
with the evaluation of a low-degree polynomials have been 
proposed [4], [5]. However some of them exhibit argument-
dependent execution time, which is not acceptable in real 
word DDS.  

The SDDS, proposed here, requires reduced number of 
mathematical operations by taking advantage of the sinus’ 
symmetry – using approximation in the range [-π/2, π/2], thus 

eliminating the even-order components of the polynomial. 
This is implemented here using MATLAB and its polyfit 
function. The SDDS suggested here, is based on 7-th order 
polynomial and features dynamic range of 128dB.  

The complicated nature of the effect of the polynomial 
coefficients on the spectral spur levels is factor, which 
suggests utilization of generic algorithm optimization (GAO) 
of the coefficients, aimed at minimization of the spectral spur 
levels. The application of GAO to SDDS results in sets of 
coefficients of the 7-th order polynomial, which increase the 
SFDR up to 133dB. 

II. SINE WAVE SERIES AND POLINOMIALS 

The series, which can be used for sine wave synthesis is [2] 
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In this series, due to sinus’ odd-symmetry, even-order 
components are excluded. To minimize the error due to 
discarded series’ component, the argument range is limited to 
[0, π/2]. A plot of calculation error e(α) , over the range [0, 2π] 
when 4 components of the series are used, is shown in Fig.1 
with solid line. The dashed line represents the discarded 9-th 
order component x9(α), which dominates the error. 

Fig.1. Calculation error e(α) and 9-th order component x9(α). 
 
The elimination of the high-order components of the series 

results in large error at angles close to odd multiples of π/2, 
while the error at angles close to multiples of π is very small.  

In the case of the DDS, the error spectrum is of interest. An 
error signal, which contains 16 periods of error “wave” e(α) is 
composed, and FFT is applied.  The main part of the spectrum 
is shown in Fig.2. The spectral line at k = 16 is the funda-
mental frequency, while the other spectral lines represent odd-
order harmonics. Since the amplitude of the synthesized signal 
is A = 1, (0 dB), the SFDR is defined by the level of the third 
harmonic at k = 48   D = -L3 = 91.4dB. 
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Fig.2. Main part of the FFT error spectrum. 

 
For its 16-bit DSP Analog Devices Inc. suggested a 5th 

order polynomial approximation of the sine wave in the range 
[0, π/2]  

   sin(α) = 3.140625β + 0.02026367β2 – 5.325196β3 + 
                    + 0.5446778β4  + 1.800293β5 ,           (2) 
where  β  = α/π,    0 ≤ β  ≤ 0.5. 
Rearranging the series in the form, which is closer to DSP, 
        sin(α) = β(a1 + β(a2 + β(a3  + β(a4+ βa5)))),         (3) 
the number of the required operations is 5 multiplications 

and 4 addition/subtractions. 
A plot of calculation error e(α) , over the range [0, 2π] with 

this approximation is shown in Fig.3.  
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Fig.3. Sine wave error with ADI polynomial. 
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Fig.4. Main part of the error spectrum with ADI polynomial. 

 
The main part of the spectrum is shown in Fig.4. The SFDR 

is defined by the level of the eleventh harmonic at k = 176   
D = -L11 = 105dB. 

III. IMPROVEMENT TO THE POLINOMIAL 
APPROXIMATION 

A drawback of the approximation (2) is that it does not take 
into account the sinus’ odd symmetry. The approximation 
suggested here in the range [-π/2, π/2] eliminates the even-
order components of the polynomial. This is implemented by 
MATLAB’s polyfit function, which minimizes the root-mean-
square error. The 7-th order polynomial obtained by this 
function is 

sin(α) = a1α + a3α3 + a5α5 + a7α7 ,         (4) 
where a1 = 0.9999974, a3 = -0.1666513,  a5 = 0.0083092,  
and a7 = -0.00018437. 
A plot of the error e(α) , over the range [-π/2, 3π/2] with this 

approximation is shown in Fig.5. 
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Fig.5. Sine wave error with 7th order polynomial. 

 
The rearranged form of the polynomial is  

sin(α) = α( a1 + α2( a3  + α2( a5  + a7α2))),                (5) 
where α2 is calculated in advance. With this in mind the 

number of the required mathematic operations is 5 
multiplications and 3 addition/subtractions. 

The main part of the spectrum is shown in Fig.6.  

0 100 200 300 400 500
-150

-140

-130

-120

-110

k

X
(k

), 
dB

Spectrum of error

 
Fig.6. Error spectrum with 7th order polynomial. 

 
The SFDR is defined by the level of the seventh harmonic 

at k = 112 ,   D = -L7 = 128dB. Thus, exploiting the sinus’ odd 
symmetry, the number of the polynomial components is 
reduced, while the dynamic range of the DDS is increased.  

The seventh harmonic dominates the spectrum, and well the 
error in the time domain in Fig.5. 
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Fig.7. Generalized block diagram of a genetic algorithm. 
 

IV. GENETIC OPTIMIZATION OF THE POLINOMIAL  

A drawback of the polyfit function, from DDS point of 
view, is that the approximation is based on minimization of 
the root-mean-square error, while for DDS it is important to 
minimize the spectral spur levels. 

The complicated nature of the effect of the polynomial 
coefficients on the levels of the harmonics is factor that 
suggests the utilization of generic algorithm. This is a 
relatively new optimization method, which provides stochastic 
search over the parameter space, guided by fitness evaluation 
towards specific goal. Although relatively slow, GAO can 
handle complex optimization problems, especially when the 
goal is to find near-best extreme in multimodal function 
domain. GAO also features global search from many 
parameter space points, capability to escape from local 
extreme [6], [7]. 

Generalized block diagram of a genetic algorithm is shown 
in Fig.7. Usually, GAO comprises three operations - 
Selection, Genetic operations, and Replacement, which are 
repeated in genetic cycle. As in nature, population consists of 
individuals, each represented by its chromosome. The 
chromosome encodes all parameters of an individual. The 
genetic cycle starts with evaluation of the fitness (FE) of each 
individual. Then the individuals are ranked, accordingly to 
their fitness values, and a particular group of best individuals 
(parents) is selected by operation, called parent selection (PS), 
to generate Offspring. Genetic operators as Genetic crossover 
(GC) and Mutation (M) are applied then to produce offspring. 
Exploiting replacement strategy individuals of the current 
population are replaced and thus a new population is 
composed. Such genetic cycle is repeated until certain 
termination criterion is reached (predefined number of genetic 
cycles, or fitness threshold). 

Binary coding of the coefficients and chromosome 
There are four coefficients ai to be encoded. In order to 

facilitate the flexibility in exploring the parameter space, the 
following mapping is exploited 

∑
−

=

+Δ−=
1

0
0 22/

b

j

j
ijiiii baa δ ,  i = 1,3,5,7.                       (6) 

where ai0 are the initial values, calculated by polyfit function,  
∆i are the ranges of the variation, bij are the bits, b is the 
length of the binary string for each coefficient, and δi are the 
quantizing steps. These parameters are predefined for each 
coefficient ∆1 = 0.00002, ∆2 = 0.0002, ∆3 = 0.0003, 
∆4 = 0.0020, δi = ∆i 2-b. In the developed GAO gene length 
b = 12 is chosen, which defines chromosome length L = 48 
bits, and a search space of 248 points. 

Fitness evaluation 
Since the objective of GAO is to reduce the spectral spur 

levels, the error signal and its spectrum are to be calculated. 
For each individual of the population the chromosome is split 
into genes and, accordingly to the mapping scheme (6), the 
coefficients are calculated. This set of coefficients is passed to 
the error and spectrum calculation function, which returns the 
levels of spectral spurs in decibels. 

Parent selection and genetic operations 
The number of the best individuals, selected for 

reproduction, is Nb = 30. These parents produce 60 child 
chromosomes by single-point crossover and double mutation 
with probability pm = 0.995. Mixed replacement strategy is 
exploited: 30 best chromosomes are directly copied into the 
new population, which represents elitism, 210 mid-rank 
chromosomes undergo mutations and 120 random immigrants 
replace the worst chromosomes. 

Results of the GA optimization 
Tens of runs of the dedicated GAO program in MATLAB 

were performed, several of which resulted in sets of 
polynomial coefficients ensuring SFDR D ≈ 133dB. One such 
set is a1=0.999997489622539, a3=-0.166651585015804, 
a5=0.008310170923798, and a7 = -0.000184768956791. 
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Fig.8. Sine wave error with GAO polynomial. 
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A plot of the error e(α) over the range [-π/2, 3π/2] with these 
coefficients is shown in Fig.8. The shape of the error, 
excluding the fundamental component, is more irregular, 
compared to Fig.5, spreading the energy over the spectrum. 

The main part of the error spectrum is shown in Fig.9. The 
SFDR is defined by the seventh harmonic at k = 112, D = -L7 
= 133dB. The strongest component at k = 16 indicates 
deviation of the amplitude of the fundamental component 
from the nominal value A=1. Such an inaccuracy of the 
magnitude (relative value ≈5·10-7 ) is negligible in practice. 
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Fig.9. Error spectrum with GAO polynomial coefficients. 

 
The development of the GA optimization over the time is 

illustrated in Fig.9, where the decrease of the maximal spur 
level Ls is shown. 
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Fig.9. Development of the GAO over the time (iterations). 

 
A distribution of the fitness of the individuals within the 

population at the end of the GAO is shown in Fig.10. About 
30 of the individuals (the elite) have fitness close to the best 
one (-133dB).  
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Fig.10. Fitness of the population at the end of GAO. 

 
The GA optimization was performed on desktop machine 

with AMD Athlon 64X2 DualCore 5200+ 2.7GHz processor. 
Single run with specified GAO parameters and 1000 iterations 
takes approximately 80 s. 

V. CONCLUSION 

The optimization of the polynomial approximation of the 
sine wave aimed at Direct Digital Synthesis of sine wave 
signal was considered. Taking into account the symmetry of 
the sine wave, and applying GAO, minimizing the spectral 
spur levels, a polynomial of 7-th order, which increases the 
spurious free dynamic range D up to 133 dB is suggested. 

Further research, relevant to the problem, may focus on the 
following topics: 

- polynomial approximation with polynomial of other order; 
- quantizing effects in 16- and 32-bit implementations; 
- fusing the GAO and the Gradient based search. 
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