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Abstract – In this work are compared and evaluated the 
computational structures of the Inverse Difference Pyramid, IDP 
(already presented in earlier publications of the authors) and the 
famous Laplacian Pyramid, LP for discrete images decomposition. 
On the basis of the comparison of the substitution graphs which 
represent the recursive calculation of the 3-layer decompositions 
and of the evaluation of their structures complexity, are outlined 
the basic IDP advantages for pipeline image processing. The 
results obtained could be used for design of IDP coders for image 
compression, aimed at real-time applications. 
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I. INTRODUCTION 

The contemporary computer world involves the 
management and processing of huge amounts of visual 
information: still images, video, and multimedia. The efficient 
storage and compression of this information requires the use of 
various techniques for image representation. The primary form 
for digital image presentation, which is not compressed, is the 
matrix [1]. This approach ensures unchanged image quality, but, 
its storage requires significant resources, and the processing – 
high computational power. The secondary forms for image 
representation are obtained from the primary one and could be 
pyramids, multi-dimensional vectors, orthogonal transforms, 
tree structures, algebraic models, models for visual information 
perception, etc. The main attention in this paper will be given to 
the pyramidal representations and their efficiency.  

In general, the pyramidal representation [1-4] describes the 
image with progressively increased resolution, which 
corresponds to the layers of the Gaussian-Laplacian Pyramid. 
The derivatives of this representation are the Reduced 
Sum/Difference pyramid; the S-transform pyramid, the 
Hierarchy-Embedded Differential Pyramid; the Least Square 
Pyramid, the Morphological Pyramid, etc. This group of 
pyramids is called over complete [6] because the needed 
memory is larger than that for the non-compressed image.  
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The Orthogonal pyramids are non-over complete. They are 
usually based on Wavelets [1] or Contourlets [7] functions and 
have higher efficiency and computational complexity than 
pyramids from the first group. The spectral image 
representation [1-4] is based on orthogonal transforms of 
different kind: statistical (Karhunen-Loeve Transform, Principle 
Component Analysis, Independent Component Analysis, 

Singular Value Decomposition) and determined (Discrete 
Fourier Transform, Discrete Cosine Transform, Walsh-
Hadamard Transform-WHT, Hartley Transform, Lapped 
Orthogonal Transform, etc.). In this group could be 
included the new algebraic image transform [8] based on 
2D angular windowing functions, which is suitable for the 
synthetic shape local phase and orientation evaluation. The 
transforms from the first group have higher computational 
complexity than these from the second one. Another 
approach for image representation is the perceptual one [9], 
based on anisotropic filtration controlled by the Human 
Visual System (HVS) visual attention model. The 
knowledge-based models for image representation are used 
mostly in the systems for Visual Information Retrieval. The 
main approach for image representation used is a pyramid 
model of 4 layers, which contain correspondingly: the 
primary matrix, the features vectors, the description of the 
relations between the features and the semantic image 
structure. 

 The general class of linear transform decomposes the 
image into various components by multiplication with a set 
of transform functions. Some examples are the Discrete 
Fourier and Discrete Cosine Transforms, the Singular 
Value Decomposition, and finally, the Wavelet Transform, 
of which the Laplacian Pyramid and other subband 
transforms are simple ancestors. 

In this paper the IDP decomposition [5] is compared 
with the Laplacian pyramid (LP), because LP is the 
fundamental technique in this area. 

The paper is arranged as follows: Section 2 is devoted 
to the analysis of the quantization noise on the IDP and LP 
decompositions; in Section 3 are presented the graphs, 
representing the calculation rules of IDP and LP and 
Section 4 is the Conclusion.  

II. ANALYSIS OF THE QUANTIZATION NOISE ON 
THE IDP AND LP DECOMPOSITIONS 

The still image is initially represented as a matrix [B] of 
size N×N (N=2n) and elements B(i,j). In order to simplify 
the IDP decomposition analysis [5] is assumed that in the 
transform of each sub-image is retained one spectrum 
coefficient only. In case that this coefficient is with spatial 
frequency (0,0) the IDP is represented by the relation: 

,)j,i(E)j,i(E)j,i(Bj)B(i, 1n

1n

1p

k
1p

p
−

−

=
− ++= ∑

                (1)  
N.1,2,..,  ji,,4,..,2,1k p

p ==
           

 
where  

215



     - 0p levelfor  =  
   B)B(Ij)(i,B 0 ==  

   [ ] ( ) ∑∑
= =

−
×==

n n2

1i

2

1j

1nn
0 j)(i,B 22j)(i,BMB  

   j),(i,Bj)B(i,j)(i,E0 −=  
   - 1-n1,2,..,p levelfor =  

   

  ,)E(I)j,i(E pp k
1pp

k
1p −− =

 

   

, )j,i(E)22()]j,i(E[ME
)j,i( W

1p
1pnpnk

1pp
k

1p
pk

pp ∑ ∑
∈

−
−−−

−− ×==

 

   

j),(i,Ej)(i,Ej)(i,E 1pk
2p2p1p
−
−−− −=

    - np levelfor =  

   

).j,i(E)j,i(E)j,i(E 1nk
2n2n1n
−
−−− −=

    
pkW is a window of size pnpn 22 −− × and kp is the number of 

the mean difference pk
1pE −  or interpolated )j,i(E pk

1p−  
image  in 

the IDP layer p. 
The IDP components are quantizated starting from the layer 

p = 0 up to layer p = n. It is assumed that the influence of the 
quantization noises could be represented by linear additive 
model. Then Eq. (1) is transformed into:  
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Here (.)Qp  and (.)Q 1
p
−  are the corresponding operators for 

quantization/dequantization of the components in the 
decomposition layer р. With the mark )(. ′  are indicated the 
terms, restored after dequantization, which contain additive 
noise components obtained in result of the quantization. 
The dequantizated IDP component for the decomposition layer 
p=0 is represented by the sum: 
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where )j,i(0ε  is the noise ingradient.  
    For the next decomposition layers p = 1,2,...,n is obtained 
correspondingly: 
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Тук ep(i,j) is the quantization noise for the IDP component p. 
The restored image (Eq. 2) could be expressed using the 

original one and Eqs. 3 and 4): 
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where )j,i(Σε is the total quantization error for the layer 
p=n: 
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For the LP decomposition [2] the total quantization error 
for the layer p=0 (which corresponds to IDP layer  p=n), is 
defined as follows: 
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where F(.) is an operator, representing the filtration of the 
corresponding LP component. 

The comparison of the quantzation noise distribution on 
IDP and LP decomposition layers shows that for the IDP 
the noises for the layers with icreasing numbers  p=1,2, .... 
are much lower than these for the LP layers with decreasing 
numbers p = n-1, n-2,... 

 The noise relation for layers  p=1 for IDP and p=n-1 for 
LP could be represented as follows: 
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  Similarly, for IDP and LP layers p = 2 and p = n-2 
correspondingly this relation is: 
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Then in result of the comparison of Eqs. (6) and (7) 
follows, that   
        )j,i()j,i( PL

ΣΣ ε<<ε ,                                    (11) 
i.e. the influence of the quantization noise on the restored 
image is much lower in IDL than in LP.  

III. GRAPHS, REPRESENTING THE IDP AND LP 
DECOMPOSITIONS 

On Figs.1 and 2 are shown the graphs, representing the 
calculations of IDP and PL for image of size 4×4 pixels (N 
= 4). The comparison of these graphs shows that: 

• The information in the IDP and LP components is 
identical, but arranged in inverse order; 
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• The volume of the accumulated  quantization noises in 
the restored image is lower in IDP than in LP. This conclusion 
follows from the analysis of the noise distribution for both 
pyramids in accordance with Eqs. (2-10);  

• IDP better corresponds to the requirement for 
progressive image transfer (PIT) [9] than LP, because the 
calculation of the IDP components starts from the pyramid top 

and continues to its base, while for the PL this sequence is 
in inverse order;  

• The IDP graph (Fig.2) shows that after calculating 
the layer р = 0 the input data could be substituted with the 
so obtained, etc. – for the next  layers (р = 1,2...). From this 
follows that the memory needed for the IDP pipline 
implementation is two times smaller than that for LP. 
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Fig. 1. LP structure graph 

 [B(i, j)] = [ )j,i(B ]+ )]j ,i(E[ 1k
0 + [ 1E (i, j)];   1k =1,2,3,4. 
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Fig.2. IDP structure graph 
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