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Abstract – In this paper an analysis is presented concerning 
the asymptotic state of the one-dimensional self-organizing map 
(SOM) with finite grid in the case of normal point distribution 
input. The SOM distortion measure is analyzed with its optimum 
found approximately. The results obtained are considered useful 
enough in wide variety of practical cases where fine tuning of the 
SOM is needed. 
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I. INTRODUCTION 

It is well known fact that the area allocated for storing the 
most important feature set inside a self-organizing map 
(SOM) is proportional to the frequency of occurrence of that 
very same feature in the observations [1]. As the SOM 
structure tends to become very complex in the most of its real 
case applications often the magnification factor is used to 
describe heaping of feature vectors. It is simply the inverse of 
the point density around each neuron representing a cluster. 

So far an investigation of the point density for the linear 
map is led in the presence of a very large number of codebook 
vectors over a finite area [2], [3]. It is revealed that the 
asymptotic point density is proportional to the probability of a 
certain feature vector occurring raised to some exponent 
depending of the number of neighbors including the winning 
neuron and some scalar factor. 

In any case the initial neighbor function width may vary 
largely during the training process starting with huge values 
and ending with zero-order topology case – no neighbors 
except the winner are present. This boundary case is undesired 
since the learning process no longer maintains the order of the 
codebook vectors. The approximation accuracy of the 
probability of occurring for a feature and the minimum 
stability of ordering demanding more neighbor interactions 
are the two aspects to be balanced. 

If we have no neighbors around the winner a simple scalar 
quantization case occurs. Then the power of the asymptotic 
function for the point density decreases, according to [3] 
bellow 1/3. Getting this power to higher values incrementally 
by trial and error approach seems a good solution but the 
following tendencies should be considered. If we try to 

approach the Bayesian classifier, i.e. to find the optimal 
classification border and the density functions of adjacent 
clusters are close to each other the latter could be replaced 
with any other pair of monotonic functions of densities. In 
such a case the practical SOM application is adaptable to 
simplification. The other important property is that when 
feature dimensionality is increased in the order of hundreds of 
components per vector the power is close to 1 [3]. Similar 
research on the change of this power is done in [4] when the 
neighbor function is Gaussian kernel and its normalized 
second moment is independent variable. The resulting range 
for the power value in this case is from 1/3 to 2/3. Analogous 
results are presented in [5].  

What has not been investigated so far is the influence of the 
normal point density of the input over the asymptotic state of 
a finite one-dimensional SOM and its distortion measure. In 
[6] a typical practical challenge is given which can be solved 
by the approach presented here. In part 2 such analysis is 
presented and in part 3 some computational results are given. 
In part 4 a conclusion is made.  

II. SOM ANALYSIS WITH NORMAL POINT 
DENSITY INPUT 

A. Asymptotic State of the One-Dimensional Finite-Grid SOM 

Let one-dimensional feature space of x is considered. For 
our analysis to be correct the following assumptions should be 
granted: the number of points (feature vectors) must be large 
enough (e.g. by criteria given in [1]) and they must be 
stochastic variables so their differential probability for each 
cluster they fall into, i.e. the probability density p(x) could be 
defined. The codebook vectors mi usually form regular 
optimal configuration and thus can not be stochastic. Their 
number is typically low in any cluster as well. 

Let suppose mi and mi+1 are two neighboring points. A way 
of defining the point density is as (mi+1 – mi)-1 but it does not 
cover the samples around the boundaries of the clusters for 
which this density does not have meaning. So a better way of 
defining it is as the inverse of the width of the Voronoi set 
[(mi+1 – mi)/2]-1. 

The input consists of samples ,...2,1,0 ,)( =ℜ∈ ttx  
while the codebook is represented by 

.,...,1 ,...,2,1,0 ,)( kittmi ==ℜ∈  It is assumed 

1)(0 ≤≤ tx . The one-dimensional SOM algorithm with at 
least one neighbor at each side according to [1] is given by: 
 cN ifor    )],()()[()()1( ∈−+=+ tmtxttmtm iii ε , 
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 cN  ifor      )()1( ∉=+ tmtm ii , 

 { },)()(min arg
i

tmtxc i−=  (1) 

 { })1,min(,),1,max( +−= ckcclNc , 
where Nc is the neighbor set around node c and ε(l) is the 
learning-rate factor. The Voronoi set Vi around mi is defined 
as: 
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In this case Ui is the set of such x(t) which provoke changes 

in mi(t) during one learning step. Following (1) and (2) we get 
to the well known stationary equilibrium for mi coinciding for 
the general case [1]: 
 i },|{ ∀∈= ii UxxEm . (3) 

In other words every mi becomes centroid of the probability 
mass for each Ui and then for 2 < i < (k-1) the limits for Ui 
are: 

 )(
2
1

12 −− += iii mmA , 

 )(
2
1

21 ++ += iii mmB . (4) 

For i =1 and i = 2, Ai = 0, and for i = k – 1 and i = k,   = 1.  
The case investigated here concerns input data with the 

following distribution: 
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where x0 = 0 is set since 10 ≤≤ x and it is enough to 
examine only the right part of the Gaussian curve – the results 
for the left one could be obtained from the symmetry 
properties. 

As (5) is too complex to be used in finding the centroids of 
the probability masses, Taylor series are used instead to the 
second order for simplicity: 
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and substituting (7) and (8) into (6) the approximate 
distribution is: 
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The stationary values of the mi are defined by the set of 
nonlinear equations obtained by transition to analog domain: 
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The solution of such a set could be done in the following 
way [1]. Let us have: 
 T

kmmmz ],...,,[ 21= . (11) 
The equation to be solved is of the form: 

 )(zfz = . (12) 
The first approximation then is z(0) and every subsequent 

approximation for the root is found by: 
 )( )()1( ss zfz =+ . (13) 

The increase of the computational complexity using (13) is 
nonlinear with the number of grid points growing. So in [1] an 
expedient way of calculating the root is given and it consists 
of defining the point density qi around mi as the inverse of the 
length of the Voronoi set – qi = [(mi+1 – mi-1)/2]-1. As a result 
of that qi can be expressed in the form const.[p(mi)]α. Then 
passing from mi to mj it is true: 
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For improved accuracy more values of the mi are needed as 
we shall see in the next section. 

B. Finding the One-Dimensional SOM Distortion Measure 
with Finite Grids 

The objective function of the SOM is given by [1]: 
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where Vi is the Voronoi set around mi and hij is defined as: 
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and i and j run over all the values defining hij.. 
Then (15) becomes: 
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where Ni is defined in (1) and the borders Ci and Di of the 
Voronoi set Vi are: 
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From (17) and (18) the gradient of E could be found as: 
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but here will not be given due to its long form and since the 
calculations are trivial. 

To obtain minimal distortion for the SOM optimal values 
for mi should be found. A way of doing this is using the 
gradient-descent method according to: 
 )|/)(()()1( tiii mEttmtm ∂∂−=+ λ , (20) 
where the scalar factor λ(t) is typically in the range from 0.001 
to 0.01 but even larger values of the order of 10 are tolerable 
[1]. Here E is of the fifth order, so at least one minimum can 
be found. The tendency is with the growth of λ(t) the found 
minimum to become global not depending of the initial values 
of mi. 

III. COMPUTATIONAL RESULTS 

As a simulation environment we use Matlab® R2009B over 
MS® Windows® XP® Pro SP3. 

First α from (14) is found for different number of grid 
points. The more mi are used the more accurate are the results. 
For i = 4 and j = k – 3 assuring negligible border effects 10, 
25, 50, and 100 grid points are used. The same experiment is 
done with three other probability functions – linear, quadratic 
and linear-quadratic in [1], so here a direct comparison can be 
made. The results are given in Table I. 

TABLE I 
THE DERIVED ΑLPHA FOR FOUR DIFFERENT 

DISTRIBUTIONS OF THE INPUT  

Grid points 

Exponent α 

Linear, [1] Quadratic, 
[1] 

Linear-
quadratic, 

[1] 
Normal

10 0.5831 0.5845 0.5845 0.5850 
25 0.5976 0.5982 0.5978 0.5980 
50 0.5987 0.5991 0.5987 0.5980 

100 0.5991 0.5994 0.5990 0.5992 
 

It is clearly seen from Table 1 that even for such different 
distributions as linear and quadratic from one side and the 
normal on the other, the resulting α is almost constant and 
very close to 0.6. Graphically the results are given on Fig. 1. 

 
Fig. 1. Theoretically derived α as a function of the number of grid 

points for four different distributions of the input for the SOM 
 
After computing the optimal mi using (19) and (20) for the 

same number of grid points – from 10 to 100, it is possible to 
estimate α. Now when the minimal distortions have been 
assured this is done experimentally over real input data with 
quadratic and normal distribution around the winners. The 
results are given in Table II. 

TABLE II 
EXPERIMENTALLY ESTIMATED ΑLPHA FOR TWO 

DIFFERENT DISTRIBUTIONS OF THE INPUT AT THE 
MINIMAL DISTORTION MEASURE 

Grid points 
Exponent α 

Quadratic, 
[1] Normal 

10 0.3281 0.2989 
25 0.3331 0.3330 
50 0.3333 0.3331 

100 0.3331 0.3330 
 

Obviously the values obtained here again do not depend on 
the number of grids and again are too close one to another 
despite the different form of the input distributions. The 
significant difference is with the results obtained by the 
theoretical derivations from (14). Now when we have the 
optimal mi found it is seen that the exponent of the 
approximated state of the SOM is virtually equal to 1/3. This 
is actually a case coinciding with the optimal vector 
quantization [1] unlike the case of α = 0.6 and confirms the 
correctness of the optimal mi calculated. Graphically the 
results from Table II are given in Fig. 2. 

In both cases, for α = 0.6 and α = 0.3, mi can be considered 
as forming an elastic network expanding into the input feature 
space following the order of appearance of the consecutive 
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samples. The fact that the presented stochastic approximation 
(1) – (14) can not ensure the optimal case when α = 0.3 does 
not mean that it is useless – actually saving the iterations from 
(20) and the preliminary fixation of mi from (15)-(19) means 
considerable saving of computation time which is important in 
wide range of practical cases. 

 
Fig. 2. Experimentally derived α as a function of the number of grid 

points for four different distributions of the input for the SOM at 
minimal distortion measure 

 
One practical way of enhancing the work of a SOM is 

taking higher value for α, not only over 1 but even greater 
than 10, in the cases when the expanding network of nodes 
does not occupy at least half of the feature manifold. This step 
should be preceded by passing the training sample set in 
random order considerable number of times and only then 
should be used as an utter measure. In other cases proper 
action could be introducing normal distributed data into the 
area where the expansion is not wide enough and then to 
substitute it with the original one the number of epochs 
needed. In such situations the balance between the 
computational costs determined from (20) and the accuracy 
with its maximum defined by solving (19) should be carefully 
achieved. 

IV. CONCLUSION 

In this paper an approach for finding the stationary 
positions of the nodes of one-dimensional SOM has been 
presented in the case of normal density point input. The 
results are precise enough taking the advantage of very fast 
computation. Furthermore the distortion measure of the SOM 
using finite grid is calculated in the general case and it is 
shown that the positions of the nodes could be optimized 
iteratively at the cost of more computation time but which 
leads to results close to those from the optimal vector 
quantization. 

The results achieved prove the correctness of the suggested 
approach which is considered useful in a large number of 
practical cases where the input data poses normal point 
density distribution. 
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