

Automatic Report Producing from Results of
Optimization Tasks in Batch Signal Processing

Slavy G. Mihov1

Abstract – In this paper is presented a program solution (cre-
ated in Matlab) designed to execute similar computations over a
set of input data files, store results from every single processing
(text, graphics, execution time, etc.) and produce a perspicuous
report (*.doc, *.pdf) with the obtained results included. This tool
performs batch signal processing and removes the necessity of
human interaction until all processing is over and the report is
automatically generated, which tends to be very helpful for long
time intervals of calculations.

Keywords – generate automatic report, batch processing.

I. INTRODUCTION

Optimization tasks (particularly in signal processing) are a
common problem with massive theory built for the purpose.
Many times signal processing is complicated, time consuming
and computationally expensive, especially in performing mo-
notonous operations over packs of numerous signal files -
batch processing.

In previous works, concerning algorithm development and
evaluation for processing biological signals and estimating the
results, a common use case was experimenting with various
parameters of the processing algorithm to seek optimal results
in some meaning. In [1] is investigated a wavelet denoising
procedure for the purposes of hearing-aid signal processing.
Particular database of recordings of human speech captured in
various noisy environments (in several signal-to-noise ratios)
is subjected to processing with a denoising algorithm. The
wavelet denoising algorithm used, has numerous of parame-
ters which adjust its performance, thus seeking the optimal
algorithm profile turns in an optimization task with numerous
independent arguments. An evaluation metric is used to esti-
mate the quality of processing every single database record-
ing. In this investigation, plausible results are obtained not
until processing a large enough set of test recordings, which
could have never been done (easily) without using a tool for
batch signal processing and automatic report generation, gene-
ralizing the obtained results.

In the same manner [2] develops an algorithm for distin-
guishing atypical from typical heart beats in ECG signal for
the purposes of automatic feature recognition. The evaluated
algorithm uses an optimal linear transformation of the availa-
ble leads in a multichannel ECG signal to derive a new lead
with enhanced atypical beats. The pursue of this optimality is

again an optimization task searching for a single set of coeffi-
cients for the linear transformation that produce the best result
(according the optimization criterion). Evaluating the algo-
rithm and proving its functionality [2, 3] is again subjected to
processing large databases of different format ECG record-
ings. This could have also been a tedious task without the use
of a tool for batch processing and automatically accumulating
the results in the form of a report for the benefit of the human
to estimate the processing.

The tool used for automatic report generation has improved
more and more with every successive project. It gradually
evolved from a couple of script lines, becoming more and
more complex, to turn to a sophisticated and a irreplaceable in
algorithm development and evaluation tool.

II. TOOL FOR BATCH PROCESSING

For the purposes of investigation and algorithm develop-
ment [1, 3] is created an environment for processing and visu-
alizing signals in the form of input data. This development
tool is supposed to greatly facilitate and automate the minor,
and insignificant for the processing operations.

The primary goal of the batch processing tool is to facilitate
gaining and storing in a convenient form the results from
processing numerous test datasets (ECG, human speech, etc.
recordings). As a result from execution, in the working direc-
tory are created groups of files containing information for the
processing. For instance, for each test recording is created a
text log file (*.log) containing statistic for: computation time
(begin, end, continuance), optimization criterion used, optimal
algorithm parameter set obtained and so on. The input signals
and output results are stored in the form of diagrams in vector
graphic format (*.eps, *.emf), convenient to use in documen-
tation and consecutive processing. Amongst the valuable fea-
tures of the tool for batch processing is the ability to automati-
cally produce perspicuous report (*.pdf, *.doc) including data
for all processing, parameters of computations and results in
the form of signal graphics, text statistics and tables. This fea-
ture tends to be very convenient and saves much time in
browsing the suitable data recordings in large databases.

A. Structure of the Tool

The tool is developed as a Matlab script program, which
generally tends to be platform independent, executed by Mat-
lab Common Runtime (MCR). However, due to the fact that
some parts of its functionality is based on MS Windows spe-
cific program technologies (COM/OLE), the tool occurs to be
platform dependent.

1Slavy G. Mihov is with the Faculty of Electronics, Technical
University – Sofia, blv. Kliment Ohridski 8, 1000 Sofia, Bulgaria,
e-mail: smihov@tu-sofia.bg

241

The program for batch processing (Run.m) consists of sepa-
rate functional modules formed in a couple of script files
(*.m). Figure 1 shows the general structure of the develop-
ment tool and the connections between its five major parts:

Run.m is the core module of the tool for batch signal
processing, formed as a sequential procedure consisting sev-
eral processing steps. Its structure can be seen on Fig. 2.

Library is a set of library functions (read/write text/data
files, functions for signal pre-processing, etc.), which functio-
nality is used by the main program.

Records denotes the set of input data files (*.tmp) pending
for processing. In [2, 3] these are multichannel (4, 8, 12) ECG
recordings and in [1, 4] these are human speech recordings
(clean and contaminated with noise in several SNRs).

Data.txt is a text file which contains specifications for the
batch processing. It is used by the main program (Run.m) to
define parameters such as: list of input data file names, paths,
optimization criteria, constraints, optimization intervals, etc.

Report is the final report in the form of a MS Word docu-
ment (*.doc) and a Portable Document Format (*.pdf). This
report is automatically generated after all batch processing is
completed and contains results in graphical, text and table
form for convenience of the human reader.

Table 1 summarizes all files involved in the batch
processing and automatic report generation. It lists the files in
the work directory by extension, either used as an input or
created during the execution of the optimization task.

TABLE I
FILES USED IN BATCH PROCESSING

File Purpose Description
*.tmp input data Miscellaneous data
*.log execution log Text log
*.eps / *.emf output diagram Graphical results
*.doc output report MS Word document
*.pdf output Portable Document

After the parameters for signal processing and optimization
have been set in the text file Data.txt, the batch computations
can be started by running subroutine Run.m. The last one or-
ganizes all calculations in batch mode, thus eliminates the
necessity of human interaction and control until finalizing all
operations which can be quite time consuming. As final result,

in the working directory are created numerous files holding
text and graphical information for the input data (signals) and
the obtained results (Report).

B. Tools Specifics

The tool for batch processing and automatic report genera-
tion (Run.m) does not need any Graphical User Interface
(GUI) to operate, provided that all necessary files (Records,
Data.txt) are present. It can be run in a console, deployed to a
remote machine to use its computation resources and easily be
scheduled for execution in time. However, setting the parame-
ters of the batch processing task (Data.txt) can be more con-
venient if this is done automatically in a GUI, which is al-
ready being developed for the optimization task in [3].

The essential work in organizing the batch processing is
done by the subroutine Run.m, which main stages are shown
on Fig. 2 as a nested sequence of operations. The process flow
is relatively straightforward consisting the following steps:

1. Create working directory (.\Temp\) or clear already ex-
isting one to prepare it for storing the temporary work files
and processing results. In case an old directory already exists,
this suggests that batch processing has been done before. Its
contents is being archived (*.rar) with the current date/time in
order to preserve these previous results for potential use later.

%% Create Temp directory
if(~exist('.\Temp', 'dir'))
 mkdir('.\Temp');
else

Fig. 1. Tool Structure

Create
*.log file 2

Optimization
Procedure

Write in
*.log file 1

Visualize
Result

Close
*.log file 2

Solve Optimization
Criterion:

a

b

c

d

e

Work
Directory

1

Computation
Parameters

2

Create
*.log file 1

Process
Data

Close
*.log file 1

Generate
Report

3

4

5

6

Initialization

Pre-
processing

Visualize
Input Data

Solve
Opt. Criteria

Optimization
Parameters

Data Processing:

A

B

C

D

E

Batch Processing:

Fig. 2. Batch Execution Flow

242

 disp('Backup existing results...');
 command = sprintf('rar a "Temp (%s).rar" Temp',
datestr(now, 'dd mmmm yyyy, HH.MM.SS'));
 [~, result] = system(command);
 disp(result);
 delete('.\Temp*.eps');
 delete('.\Temp*.emf');
 delete('.\Temp*.log');
end

2. Load parameters for batch computations, from exter-
nal text file Data.txt – file names, intervals for optimization,
criteria for optimization, procedures for pre-processing (like
subroutines for removing zero line shift, tremor artifacts and
powerline interference in ECG) and so on. The text file Da-
ta.txt is being parsed and all input parameters are placed in the
vector variable param.

%% Read record file names and intervals
fileName = '.\Data.txt';
fid = fopen(fileName, 'r');
textscan(fid, '%s %s %s %s %s', 1); % bypass line 1
param = textscan(fid, '%s %d %d %d %d');
fclose(fid);

3. Create master *.log file to store in text form the results
of the performed computations; also starts a global timer to
track execution time.

4. Successive iterative processing of every single input da-
ta file from the list in Data.txt.

5. Close master *.log file.
6. Generate automatic Report for all signal processing

(Report.doc, Report.pdf) – document containing results and
statistics in text, table and graphical for the performed algo-
rithm optimization, obtained set of optimal parameters, input
signals and output data.

The iterative processing of the succession of input record-
ings (step 4) consists of the following major stages:

A. Initialization of constants, loading input signal data
from Records (*.tmp) and parameters of the optimization task.

%% Read data file
 fileName = strcat(char(param{1}(index)));
 [~, name] = fileparts(fileName);
 fid = fopen(fileName, 'r');
 data = fread(fid, 'int16');
 fclose(fid);

 %% Set typ and atyp intervals
 typ1 = param{2}(index);
 typ2 = param{3}(index);
 atyp1 = param{4}(index);
 atyp2 = param{5}(index);

 %% Initialize constants
 t = 0: 1/Q: N/Q; % Scale in sampling period, [s]

 %% Signal channels
 channels = reshape(data, N, numCh);

B. Pre-processing input data before starting the main opti-
mization task. For ECG records [3, 5] these can be any sophis-
ticated algorithms for eliminating zero line drift, tremor arti-
facts, powerline interference, etc. formed as program proce-
dures in a Library for convenient use. Similarly, when
processing human speech records, these can be any adequate
algorithms for filtering, denoising, resampling and so on.

C. Visualizing input data and storing the diagrams of the
signals in vector graphic format (*.eps, *.emf).

%% Plot signal leads
 f1 = figure('visible','off');
 plot(t(axe1), S1(axe1), 'k', ...
 t(axe1), S2(axe1), 'g', ...
 t(axe1), S3(axe1), 'r');

 print(f4, '-depsc2', '-tiff', '-r2400',
sprintf('.\\Temp\\Record-%sd.eps', name));

 print(f4, '-dmeta', '-r2400',
sprintf('.\\Temp\\Record-%sd.emf', name));

D. Define optimization parameters for the input signals
and prepare constrained task for minimization – set intervals,
criteria and constraints.

E. Perform optimization iteratively for every single op-
timization criterion of the processing algorithm, create logs
for execution and store plots in vector graphic formats (*.eps,
*.emf) in the working directory.

%% Optimization
 switch criterion
 case 1
 obj = @(x)Objective1(x, LTyp, LAtyp);
 case 2
 obj = @(x)Objective2(x, LTyp, LAtyp);
 case 3
 obj = @(x)Objective3(x, LTyp, LAtyp);
 otherwise
 disp('Unexpected criterion!');
 end

 options = optimset('Display', 'iter',
'Algorithm', 'active-set', 'MaxFunEvals', 1600);
 [x, fval] = fmincon(obj, [0 0 0 0 0 0 0 0], [],
[], [], [], [], [], @Constraint1, options);

III. SUBROUTINE FOR GENERATING REPORT

Probably the most interesting part of the tool for batch sig-
nal processing and storing results for the performed optimiza-
tions is the subroutine for automatic report generation. It is
formed as a separate subroutine, which can be invoked inde-
pendently and it produces the report based on whatever input
text and graphic files are present in the directory given. It con-
sists of 4 sequential steps and below is shown its listing code.

The first step is to Create a MS Word document and add
some text, graphics and formatting using VBA (Visual Basic
for Applications) script commands invoked directly from Mat-
lab environment [6]. Matlab’s support for VBA is utilized by
the command actxserver(), which creates a local OLE Auto-
mation server, and returns a handle to the default interface of
a COM server with the programmatic identifier of MS Word.

The next steps are trivial and again use VBA commands to
Save, Print (in *.pdf format) and Close the so created report
document.

%% Generate report from *.eps/emf results.
function GenerateReport(directory, extension)

 filter = ['*' extension];

 % write to Word document
 Doc = actxserver('Word.Application');
 MS = invoke(Doc.Documents,'Add');

 set(Doc.Selection.Font, 'Name','Arial','Size',20);
 set(Doc.Selection.ParagraphFormat, 'Alignment',1);
 invoke(Doc.Selection, 'TypeText', 'Auto Report');

243

 invoke(Doc.Selection, 'TypeParagraph');

 files = dir(fullfile(directory, filter));
 for f = 1:length(files)
 fname = files(f).name;
 [~, name] = fileparts(fname);

 %Put figure in document
 invoke(Doc.Selection, 'TypeParagraph');
 graphicFile = [directory, sep, name, extension];
 invoke(Doc.Selection.InlineShapes, 'AddPicture',
graphicFile);
 end

 %Save word file
 word_name = 'Report (GUI).doc';
 full_name = [directory sep word_name];
 invoke(MS, 'SaveAs', full_name);

 % print report
 set(Doc, 'ActivePrinter', 'Adobe PDF');
 invoke(MS, 'PrintOut');

 % close document
 invoke(MS, 'Close');
 invoke(Doc, 'Quit');
 delete(Doc);

end

IV. PRACTICAL EXAMPLES

Using the presented tool for batch signal processing are ac-
complished several experiments in former projects, involving
evaluating an algorithm of interest with a large set of input
data files, estimating its performance and optimizing parame-
ters of computation. For example, in the development of the
algorithm for optimal linear transformation of multiple ECG
leads [2, 3] is done automatic processing of 250 12-channel
ECG recordings from database CSE (Common Standards for
quantitative Electrocardiography) [7], task large enough to be
out of scope of manual processing (thus no parallel between
automatic and manual execution, in means of accelerating
computation time, can be made).

On Fig. 3 is shown a sample page from a report (consisting
of over 50 pages) automatically generated after processing the
set of ECG recordings.

V. ADDITIONAL REMARKS

The substantial reduction of the time needed for manual
processing, achieved by harnessing such specialized proce-
dures as the one presented here, opens potentials for develop-
ment and utilization of automatic tools for algorithms test,
optimization and development. Such a technique is quite suc-
cessfully adopted in the investigation the practical capabilities
of wavelet transform analysis in speech signal denoising [1]
and in the development of a novel algorithm for enhancing
atypical heart beats in multichannel ECG signals [2, 3].

VI. CONCLUSION

In this paper is presented a program solution (created in
Matlab) designed to execute similar computations over a set
of input data files, store results from every single processing

(text, graphics, execution time, etc.) and produce a perspi-
cuous report (*.doc, *.pdf) with the obtained results included.
This tool performs batch signal processing and removes the
necessity of human interaction until all processing is over and
the report is automatically generated, which tends to be very
helpful for long time intervals of calculations. The method has
already been used in two different projects, particularly for
solving optimization tasks.

REFERENCES

[1] S. Mihov, R. Ivanov, A. Popov (2009). Denoising Speech
Signals by Wavelet Transform. The 18th International Scientific
and Applied Science Conference ELECTRONICS ET-2009, B.
1, ISSN 1313-1842, Sozopol, Bulgaria, June 14-17, pp. 69-72.

[2] S. Mihov, Ch. Levkov, G. Mihov (2009). Algorithm For
Optimal Linear Transformation of 4 Holter Leads for
Emphasizing Difference Between Typical and Atypical QRS
Complexes. XLIV International Conference ICEST-2009, B. 1,
Veliko Tarnovo, Bulgaria, June 25-27, pp. 403-406, 2009.

[3] Ch. Levkov, S. Mihov, G. Mihov (2009). Algorithm for Optimal
Linear Transformation of 12 Standard Leads for Emphasizing
Difference between Typical and Atypical QRS Complexes. The
18th International Conference ELECTRONICS ET-2009, B. 1,
ISSN 1313-1842, Sozopol, Bulgaria, June 14-17, pp. 20-23.

[4] S. Mihov, D. Doychev, R. Ivanov (2009). Practical
Investigation of Specific Types of Noise Signals for the Purpose
of Suppression in Hearing-Aid Devices. XLIV International
Conference ICEST-2009, B. 1, Veliko Tarnovo, Bulgaria, June
25-27, pp. 399-402, 2009.

[5] Ch. Levkov, S. Mihov. Multilead signal preprocessing by linear
transformation to derive an ECG lead where the atypical beats
are enhanced: Matlab implementation. Proceedings of TU-
Sofia, Vol. 58, Book 2, pp. 24-30, 2008.

[6] http://www.mathworks.com/matlabcentral/
[7] Journal of the American College of Cardiology, Volume 10,

p.1313-1321, 1987

Automatic Report
(11 March 2010, 00:05:35)

-1
0
1
2
3

Входен сигнал "MO1_026.DCD" (I)[mV]

-6
-4
-2
0
2
4

Входен сигнал "MO1_026.DCD" (II)[mV]

Record MO1_026.DCD, Criterion 1
Zones: Typical[1934;2302], Atypical[2897;3209]
Interval [-1;1], Step 1
Coefficients: -0.538663 0.611949 -0.320856 0.420308 0.009673 -0.081300 0.038683 0.216585
Criterion value: 7.016265
Elapsed time: 8.605 [s]

Record MO1_026.DCD, Criterion 1: -0.538663 0.611949 -0.320856 0.420308 0.009673 -0.081300 0.038683 0.216585 7.016265
Record MO1_028.DCD, Criterion 1: -0.401541 0.368620 -0.298925 -0.267109 0.503981 -0.261778 0.395557 -0.251379 6.918029
Record MO1_034.DCD, Criterion 1: -0.104322 0.006306 0.075105 -0.459651 0.754619 -0.404016 -0.133469 0.146793 23.048141
Record MO1_040.DCD, Criterion 1: 0.164153 -0.262860 0.181795 -0.248912 0.096495 0.658654 -0.591639 -0.125505 13.822222
Record MO1_054.DCD, Criterion 1: -0.291387 0.243397 0.091573 -0.402798 0.414378 -0.472508 0.047079 0.536630 12.240185
Record MO1_061.DCD, Criterion 1: 0.277412 -0.574829 -0.144249 0.083379 0.193319 -0.526128 0.344195 -0.363594 15.502168
Record MO1_065.DCD, Criterion 1: -0.586211 0.227445 -0.180324 0.033388 0.382844 -0.489075 -0.194781 0.376810 10.110164
Record MO1_074.DCD, Criterion 1: 0.324374 -0.554676 0.060670 0.191760 -0.423482 -0.011109 0.256546 -0.388758 12.039816
Record MO1_075.DCD, Criterion 1: 0.251404 0.284627 -0.781163 0.200877 0.185293 -0.046545 -0.183617 0.062133 12.276634
Record MO1_103.DCD, Criterion 1: 0.082649 -0.120703 0.322868 -0.675555 0.287894 0.060664 -0.412630 0.351339 18.489997

0 2 4 6 8 10 12
-1
0
1
2

Изходен сигнал за запис "MO1_026.DCD"

[s]

[mV]

ЕКГ запис Тип. инт. Атип. инт. Трансформационни коефициенти Критерий
MO1_026.dcd [1934;2302] [2897;3209] [-0.539, 0.612, -0.321, 0.420, 0.010, -0.081, 0.039, 0.217] 7.016
MO1_028.dcd [1839;2293] [2812;3219] [-0.402, 0.369, -0.299, -0.267, 0.504, -0.262, 0.396, -0.251] 6.918
MO1_034.dcd [1867;2160] [1319;1546] [-0.104, 0.006, 0.075, -0.460, 0.755, -0.404, -0.133, 0.147] 23.048
MO1_040.dcd [2926;3200] [2047;2264] [0.164, -0.263, 0.182, -0.249, 0.096, 0.659, -0.592, -0.126] 13.822
MO1_054.dcd [1631;2066] [3994;4438] [-0.291, 0.243, 0.092, -0.403, 0.414, -0.473, 0.047, 0.537] 12.240
MO1_061.dcd [1615;1966] [289;705] [0.277, -0.575, -0.144, 0.083, 0.193, -0.526, 0.344, -0.364] 15.502
MO1_065.dcd [1697;2151] [261;601] [-0.586, 0.227, -0.180, 0.033, 0.383, -0.489, -0.195, 0.377] 10.110
MO1_074.dcd [2652;3115] [1952;2387] [0.324, -0.555, 0.061, 0.192, -0.423, -0.011, 0.257, -0.389] 12.040
MO1_075.dcd [1839;2217] [2463;2954] [0.251, 0.285, -0.781, 0.201, 0.185, -0.047, -0.184, 0.062] 12.277
MO1_103.dcd [1792;2274] [2604;3030] [0.083, -0.121, 0.323, -0.676, 0.288, 0.061, -0.413, 0.351] 18.490
MO1_105.dcd [2897;3238] [1763;2132] [-0.143, 0.160, 0.134, 0.145, -0.245, 0.536, -0.552, 0.504] 8.732
MO1_109.dcd [2727;3067] [3351;3653] [0.258, -0.207, 0.697, -0.519, 0.246, -0.175, 0.020, 0.183] 8.382
MO1_112.dcd [2274;2623] [1414;1726] [0.001, -0.101, 0.187, -0.074, 0.101, -0.539, 0.567, -0.041] 10.474
MO1_115.dcd [2652;2907] [1149;1452] [-0.374, 0.370, -0.171, -0.067, 0.253, -0.389, -0.152, 0.671] 15.961

Fig. 3. Example Report Layout

244

