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Abstract – The knapsack problem is one of the most important 
and, at the same time, most fascinating NP-complete problems in 
the field of combinatorial optimization. From a practical point of 
view, it is interesting to estimate which knapsack problem 
instances can be efficiently handled, in terms of both qualitative 
and quantitative parameters. Another problem is to determine 
how much decisions made on implementation issues, e.g., 
application of code tuning techniques and compiler 
optimizations, affect actual performance of algorithms for the 
knapsack problem. This paper presents the results and 
conclusions drawn from the computational experiments done 
with C/C++ implementations of both classical and recent 
algorithms for the binary (0-1) knapsack problem. These 
conclusions can be useful as guidelines in practical applications. 
Further, analyzing these results could be helpful in creating 
directions for future research.       
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I. INTRODUCTION 

When discussing algorithm performance in computer 
science, we are accustomed to dealing with terms that inhabit 
the realm of mathematical abstraction, like the asymptotic 
notation and the worst-case running time. But what is the real-
world performance of algorithms that are actually 
implemented and executed on a computer? What types of 
problem instances can be practically solved, measured both 
quantitatively and qualitatively? Which decisions can a 
programmer make in order to speed up a computational 
process guided by an implemented algorithm? Thinking about 
these questions, stated solely in the context of the binary 
knapsack problem, motivated the research reported in this 
paper. In order to see the actual experimental results from an 
appropriate standpoint, a reader should be first introduced to 
the landscape of the binary knapsack problem.   

The classical binary or 0-1 knapsack is an NP-hard [12] 
maximization problem defined by the following setting: given 
a list of n items, characterized by their respective values vi        
(i = 1, 2,…, n) and weights wi (i = 1, 2,…, n), find a subset of 
these items that can be packed in a knapsack, with maximum 
carrying weight of W, whose total value is a maximum. 
Without any loss of generality, we can assume that all of the 

weights and values of items are positive integers. The Integer 
Linear Programming (ILP) model of the 0-1 knapsack is one 
of the simplest and it is created by introducing the Boolean 
decision variables xi, with xi = 1 if the item i is selected to be 
included, and xi = 0 otherwise. Formally, the ILP model of the 
binary knapsack can be formulated as follows: 
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The sum in Eq. (1) is called the objective function, and the 
inequality in Eq. (2) is the constraint.  

The 0-1 knapsack problem is actually a member of a large 
family of knapsack problems, presented in detail in [12], and, 
more recently, in [6], [8]. Knapsack problems arise naturally 
in many real-world applications, e.g., scheduling problems, 
capital budgeting, resource allocation with financial 
constraints, cargo loading, and cutting stock. In applied 
mathematics, especially operations research and cryptography, 
knapsack problems were studied and used in numerous 
contexts (e.g., Merkle-Hellman knapsack cryptosystem).  

The binary knapsack problem can be solved by means of 
exact and approximation algorithms. These algorithms have 
different performances, the study of which, in the light of 
various implementation issues, is reported in this paper. The 
chosen representative of the family of the exact algorithms for 
the 0-1 knapsack is the state of the art combo algorithm, 
described in [10]. An approximation algorithm chosen for 
implementation and testing is the fully polynomial time 
approximation scheme, described in [16]. Its selection was 
motivated by two different reasons. First, it offers a 
representative behavior of the approximation algorithms with 
errors arbitrarily close to zero at an acceptable implementation 
cost for testing purposes. Second, it is a computationally and 
memory intensive algorithm, and thus it is suitable as the 
benchmark for testing different programming 
implementations.  

The data acquired in the presented research can be useful at 
least for the following purposes:  

i) Creating recommendations for selection and 
implementation of the algorithms for solving 0-1 
knapsack instances that arise in practical applications.  

ii) Developing guidelines for possible future research 
through understanding the limitations and bottlenecks 
of the current algorithms. 
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II. EXACT ALGORITHMS FOR THE 0-1 KNAPSACK 
PROBLEM 

First exact algorithms for the 0-1 knapsack problem were 
developed in the 1950s, using the dynamic programming 
paradigm developed by Bellman [4]. 

Kolesar in 1967 was the first one to construct a branch-and-
bound algorithm for the 0-1 knapsack problem (for the best 
algorithm created through this approach see [12]). Branch-
and-bound algorithms can effectively deal only with small and 
easy problem instances [11].  

Balas and Zemel [3] proposed to randomly set the optimal 
values of some of the decision variables, and then focus the 
enumeration on the most promising ones. The subset of the 
items built in this way is called the core. The core problem 
can then be solved by either heuristics or branch-and-bound 
algorithms. This approach proved to be helpful in solving 
larger problem instances. 

Martello, Pisinger and Toth [10] proposed a hybrid 
technique of combining dynamic programming with tight 
bounds. This algorithm, called the combo algorithm, has the 
theoretical worst-case time complexity of O(nW), but it has 
proven in practice to be the state of the art in solving 0-1 
knapsack problem instances to optimality [8], [10], [11]. As a 
consequence of this fact, an implementation of the combo 
algorithm in C by Pisinger, available from [7], was chosen as 
the one of the subjects of the tests that were conducted in the 
presented research.    

III. APPROXIMATION ALGORITHMS FOR THE 0-1 
KNAPSACK PROBLEM 

An approach based on settling for an approximate solution 
to the 0-1 knapsack problem offers reasonable algorithm 
running times, even for the problem instances with 
exponentially-growing values and weights.  

A reasonable way to measure the distance between an 
approximate and an optimal solution is the relative 
performance ratio ρ which bounds the value of maximum ratio 
between an approximate and an optimal solution. For 
maximization problems, relative difference or error ε is 
defined as 1-ρ. Thus we refer to (1-ε)-approximation 
algorithms when the performance ratio of an approximate 
solution to an optimal one is larger than or equal to 1-ε. An 
algorithm is an ε-approximation scheme if it is a (1-ε)-
approximation algorithm for every input value of ε > 0. 
Further, an algorithm is said to be a polynomial time 
approximation scheme, abbreviated PTAS, if, for each fixed   
ε > 0, its running time is polynomial in the input size n. If the 
previous definition is expanded in a way to require that the 
running time of an algorithm is polynomial both in n and in 
1/ε, we get a fully polynomial time approximation scheme, 
abbreviated FPTAS. 

The binary knapsack problem is a member of a “fortunate” 
class of NP-complete problems in terms of approximation, 
i.e., polynomial time approximations with errors arbitrarily 
close to zero exist for it. The first FPTAS for the knapsack 
problem was presented in 1975 [5]. A FPTAS by Keller and 

Pferschy [8] has recently improved on all of the previous 
schemes, but only under the assumption that n ≥ 1/ε and at a 
high implementation cost, due to the fact that the algorithm is 
fairly complicated (as stated by the authors themselves in [8]). 
Based on this fact, as well as the other reasons already stated 
in Section 1, a FPTAS described by Vazirani [16] was 
selected for implementation.  

Basically, all of the fully polynomial time approximation 
schemes for the 0-1 knapsack problem follow the same 
approach of scaling values of items in order to reduce the 
number of different total sums of values, and then apply 
dynamic programming by values to a scaled instance. For the 
implemented algorithm, this scaling of the values of items is 
done in the following way: 
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To sum up, the design of almost all known approximation 

schemes is based on the idea of trading accuracy for time. The 
given problem instance is transformed into a less “precise” 
one, depending on the concrete value for ε, which is then 
solved exactly by means of dynamic programming. The 
question whether PTAS or FPTAS is the best scheme we can 
hope for when dealing with an NP-hard problem is difficult 
and it has no clear and straightforward answer [16].  

IV. PROGRAMMING IMPLEMENTATIONS AND 
COMPUTATIONAL EXPERIMENTS 

In order to conduct the experiments, a test generator for 
different types of input instances had to be first built. The C++ 
test environment using this generator was constructed in a 
generic way, so that it can be reused. It allows observations of 
behavior of a wide range of algorithm implementations for 
different problem sizes, instance types, and data ranges. 
Problem instance sizes used in testing span from 50 to 10 000 
items, and data range R takes value from the following set: 
{103, 105, 107}. Generated instance types are in accordance 
with test data sets presented in [8], and they are as follows: 

a) Uncorrelated: the weights wi and the values vi are 
distributed uniformly random in [1, R]. 

b) Weakly correlated: the weights wi are distributed 
uniformly random in [1, R], and the values vi are set in [wi - 
R/10, wi + R/10] and vi ≥ 1. 

c) Strongly correlated: the weights wi are distributed 
uniformly random in [1, R], and the values vi are set to vi = wi 
+ R/10. 

d) Subset-sum: the weights wi are distributed uniformly 
random in [1, R], and the values vi are set to vi = wi.  

For each of the instance types, data ranges, and problem 
sizes, 100 input instances were generated. The knapsack 
capacity was set to a value of: W = 0.5∑ =

n
i iw1 . All of the 

experiments were done using a PC with Intel Core i7 920 
quad-core processor and 4 GBs of RAM, running a 64-bit 
Kubuntu 9.10 operating system with Linux kernel 2.6.31.19. 
The C/C++ source code was compiled using the GNU 
Compiler Collection (gcc), version 4.4.1. The CPU times, 
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appearing in all of the tables in this section, correspond only 
to the execution of the algorithms themselves and do not 
include time used for test generation and I/O operations.  

The combo algorithm was tested first. The test results for 
the computationally easy instances are presented in Table I, 
and for the computationally hard ones in Table II. An in-depth 
explanation of why the uncorrelated and the weakly correlated 
instances are easier for computation than the strongly 
correlated and the subset-sum instances can be found in [8]. It 
is important to state here that the problem instances that are 
most often met in practice correspond to the weakly correlated 
type. The test results clearly show that the combo algorithm 
has an outstanding performance for almost all of the instances. 
But, it also has its limitations, as we can see from Table II. It 
cannot deal with instances that are both computationally hard 
and large in range (R ≥ 107). This was expected as a 
consequence of the NP-hardness of the 0-1 knapsack problem.         

TABLE I 
COMBO ALGORITHM, EASY INSTANCES, CPU TIMES [MILLISECONDS],   

n - INPUT SIZE, R - DATA RANGE 

R 
n      

uncorrelated weakly correlated 
103 105 107 103 105 107 

50 0.01 0.01 0.01 0.03 0.03 0.04 
100 0.02 0.02 0.02 0.04 0.06 0.06 
500 0.05 0.06 0.06 0.10 0.22 0.25 

1000 0.07 0.09 0.08 0.13 0.46 0.47 
5000 0.27 0.35 0.37 0.30 2.26 2.56 

10000 0.38 0.72 0.76 0.73 4.42 6.02 

TABLE II 
COMBO ALGORITHM, HARD INSTANCES, CPU TIMES 

[MILLISECONDS], n - INPUT SIZE, R - DATA RANGE, – STANDS FOR 
ALGORITHM TERMINATED WITH NO RESULT 

R 
n      

strongly correlated subset-sum 
103 105 107 103 105 107 

50 0.15 3.59 - 0.09 7.83 -
100 0.26 5.15 - 0.09 2.61 -
500 0.42 2.80 - 0.08 1.58 -

1000 0.50 2.85 - 0.06 1.65 -
5000 1.13 3.21 - 0.11 1.81 -

10000 1.82 3.71 - 0.19 1.98 -
 
The second in line for testing was the FPTAS. The results 

of the tests done with the fully optimized C++ implementation 
operating on the easy and the hard instances are given in 
Tables III and IV, respectively. The tests clearly show that 
satisfying for an approximate solution makes the job much 
easier, when dealing with large data. The FPTAS has stable 
performance for all of the instance types, while the running 
time grows fast with the size of the input. The identified 
bottleneck of the algorithm is the memory consumption in the 
dynamic programming phase, which limits application of this 
concrete implementation to instances with n < 1000. More 
advanced and complicated schemes, e.g., the one described in 
[8], share the same general type of limitation, but improve on 
the upper limit value for n.    

TABLE III 
FPTAS, EASY INSTANCES, CPU TIMES [MILLISECONDS], ε = 0.1,          

n - INPUT SIZE, R - DATA RANGE, – STANDS FOR ALGORITHM 
TERMINATED (OUT OF MEMORY) 

     R   
n    

uncorrelated weakly correlated 
103 105 107 103 105 107 

50 2.12 2.33 2.44 2.27 2.20 2.30
100 16.99 18.84 18.42 17.97 17.86 17.75
500 2.2 

×103 
2.3 

×103 
2.1 

×103 
2.2 

×103 
2.1 

×103 
2.0 

×103

1000 - - - - - -

TABLE IV 
FPTAS, HARD INSTANCES, CPU TIMES [MILLISECONDS], ε = 0.1,         

n - INPUT SIZE, R - DATA RANGE, – STANDS FOR ALGORITHM 
TERMINATED (OUT OF MEMORY) 

    R   
n    

strongly correlated subset-sum 
103 105 107 103 105 107 

50 2.76 2.77 2.79 2.37 2.43 2.49
100 20.32 20.62 20.66 18.87 18.50 18.74
500 2.5 

×103 
2.5 

×103 
2.3 

×103 
2.2 

×103 
2.2 

×103 
2.1 

×103

1000 - - - - - -
 

 The second batch of experiments was conducted in order to 
acquire information on how much decisions concerning 
implementation issues affect actual performance of algorithms 
for the 0-1 knapsack problem. More precisely, the following 
effects on performance were measured and analyzed: 

- application of templates from the C++ STL  
- application of code tuning techniques  
- application of compiler optimizations  
The Standard Template Library, abbreviated STL, is the 

first library of generic algorithms and data structures for C++, 
created by Stepanov and Lee [15]. The STL was developed 
with four main ideas in mind [15]: generic programming, 
abstractness without loss of efficiency, the Von Neumann 
computation model, and value semantics.  In the light of the 
presented research, it sounded interesting to see how well 
does the idea of enabling high level abstraction without loss of 
efficiency hold in the context of an algorithm implementation 
for the binary knapsack.    

Code tuning is a single name for a set of techniques with a 
common goal of improving performance of an implemented 
algorithm. Code tuning techniques are mostly motivated by 
the Pareto principle, and they are described in detail in [13], 
[14]. The techniques applied in the experiments reported here 
include: minimization of array references and work inside 
loops, loop fusion, strength reduction, elimination of system 
routines and common sub-expressions, etc.   

 Modern compilers offer various levels of compile-time 
optimizations [2]. Some authors suggest that these 
optimizations are superior to any of the code tuning 
techniques [13] and that a programmer should just write clear 
code and leave optimizations to compilers. Therefore, it was 
of matter of interest to this research, to test these claims in 
practice, in the context of the 0-1 knapsack problem.   
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Table V presents the results of the tests conducted with 
C++ implementations of the FPTAS. The FPTAS was chosen 
as the benchmark because it features intense numerical 
computations and has a high demand on memory. The tests 
were done using weakly correlated 0-1 knapsack instances, 
where R = 105, ε = 0.1, which best correspond to problems 
most frequently met in practice. Compiler optimizations used 
were invoked with the flag –O3 for gcc compiler, and they 
include options like the function in-lining, loop unswitching, 
tree vectorization, etc. Compiler optimization techniques are 
described in detail in [2]. The columns in Table V represent 
the following algorithm implementations: 

A. code using the STL, without code tuning and 
compiler optimizations 

B. code not using the STL, without code tuning and 
compiler optimizations 

C. code not using the STL and compiler 
optimizations, with code tuning 

D. code using the STL and compiler optimizations, 
without code tuning 

E. code not using the STL, with code tuning and 
compiler optimizations 

TABLE V 
CODE IMPROVEMENT, CPU TIMES [MILLISECONDS], n - INPUT SIZE 

 
n 

 
A 

 
B 

 
C 

 
D 

 
E 

time 
saved
A-E  

50 20.56 10.86 8.31 2.43 2.20 89%
100 146.86 80.02 67.23 18.62 17.86 88%
500 17924.01 9616.97 8110.82 2293.84 2088.03 88%

 
The most important conclusions that can be drawn from the 

presented data are as follows: 
i) Application of the STL classes without the compiler 

optimizations leads to the significant loss of 
performance (compare columns A and B in Table V). 
Modern C++ compilers are tuned to minimize any 
abstraction penalty arising from heavy use of the 
STL. Therefore, the STL classes do offer higher 
abstraction without loss of efficiency, but only when 
coupled with compile-time optimizations.  

ii) Code tuning techniques offer some speedup, but their 
effects are almost completely canceled when 
compiler optimizations are enabled. This happens 
because most of the tuning techniques are actually on 
the list of optimizations that modern compilers can 
offer. Therefore, code tuning proved to be a time-
consuming method that provides only a small 
speedup in the case of the compile-time optimized 
C++ FPTAS implementation. 

iii) Application of the compiler optimizations alone 
leads to the time savings of 87-88%, so it can be 
stated that they are the single most important 
improvement factor in the case of the C++ FPTAS.   

We can conclude from the experimental data that an 
increase in performance of almost an order of magnitude can 
be achieved through optimization solely at the implementation 
level, at least for the tested algorithm. 

V. CONCLUSION 

The first set of the computational experiments with the 
programming implementations of the algorithms for the 0-1 
knapsack problem identified some of the principal limitations 
and bottlenecks of the two analyzed algorithms, one exact and 
one approximate. This information can be helpful in 
estimating which problem instances can be efficiently handled 
in today’s practical applications. Further research in 
algorithms that combine tight bounds with dynamic 
programming, like the combo algorithm, looks promising.  

The second part of the research dealt with the 
implementation issues and their effects on the performance of 
the 0-1 knapsack FPTAS. The recorded results are in line with 
the statement from Knuth [9]: “Premature optimization is the 
root of all evil”. Compile-time optimizations proved to be by 
far the most important factor in the improvement of the C++ 
FPTAS implementation. Code tuning techniques, applied in 
the code construction phase, offer some speedup, but often at 
the price of lowering code readability. Further, modern 
compilers are better at optimizing straight than intricate code, 
and intricacies are frequently created through tuning. So, 
another sound advice might also come in the following words 
[1]: “Programs must be written for people to read, and only 
incidentally for machines to execute”.  
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