

Implementing Algorithms for the
Binary (0-1) Knapsack Problem

Dušan B. Gajić1

Abstract – The knapsack problem is one of the most important
and, at the same time, most fascinating NP-complete problems in
the field of combinatorial optimization. From a practical point of
view, it is interesting to estimate which knapsack problem
instances can be efficiently handled, in terms of both qualitative
and quantitative parameters. Another problem is to determine
how much decisions made on implementation issues, e.g.,
application of code tuning techniques and compiler
optimizations, affect actual performance of algorithms for the
knapsack problem. This paper presents the results and
conclusions drawn from the computational experiments done
with C/C++ implementations of both classical and recent
algorithms for the binary (0-1) knapsack problem. These
conclusions can be useful as guidelines in practical applications.
Further, analyzing these results could be helpful in creating
directions for future research.

Keywords – binary (0-1) knapsack problem, computational

experiments, C/C++ algorithm implementations, code tuning
techniques, compiler optimizations

I. INTRODUCTION

When discussing algorithm performance in computer
science, we are accustomed to dealing with terms that inhabit
the realm of mathematical abstraction, like the asymptotic
notation and the worst-case running time. But what is the real-
world performance of algorithms that are actually
implemented and executed on a computer? What types of
problem instances can be practically solved, measured both
quantitatively and qualitatively? Which decisions can a
programmer make in order to speed up a computational
process guided by an implemented algorithm? Thinking about
these questions, stated solely in the context of the binary
knapsack problem, motivated the research reported in this
paper. In order to see the actual experimental results from an
appropriate standpoint, a reader should be first introduced to
the landscape of the binary knapsack problem.

The classical binary or 0-1 knapsack is an NP-hard [12]
maximization problem defined by the following setting: given
a list of n items, characterized by their respective values vi
(i = 1, 2,…, n) and weights wi (i = 1, 2,…, n), find a subset of
these items that can be packed in a knapsack, with maximum
carrying weight of W, whose total value is a maximum.
Without any loss of generality, we can assume that all of the

weights and values of items are positive integers. The Integer
Linear Programming (ILP) model of the 0-1 knapsack is one
of the simplest and it is created by introducing the Boolean
decision variables xi, with xi = 1 if the item i is selected to be
included, and xi = 0 otherwise. Formally, the ILP model of the
binary knapsack can be formulated as follows:

 maximize ∑
=

n

i
ii xv

1
 (1)

 subject to Wxv
n

i
ii ≤∑

=1
 (2)

},...,1{},1,0{ nixi ∈∈

The sum in Eq. (1) is called the objective function, and the
inequality in Eq. (2) is the constraint.

The 0-1 knapsack problem is actually a member of a large
family of knapsack problems, presented in detail in [12], and,
more recently, in [6], [8]. Knapsack problems arise naturally
in many real-world applications, e.g., scheduling problems,
capital budgeting, resource allocation with financial
constraints, cargo loading, and cutting stock. In applied
mathematics, especially operations research and cryptography,
knapsack problems were studied and used in numerous
contexts (e.g., Merkle-Hellman knapsack cryptosystem).

The binary knapsack problem can be solved by means of
exact and approximation algorithms. These algorithms have
different performances, the study of which, in the light of
various implementation issues, is reported in this paper. The
chosen representative of the family of the exact algorithms for
the 0-1 knapsack is the state of the art combo algorithm,
described in [10]. An approximation algorithm chosen for
implementation and testing is the fully polynomial time
approximation scheme, described in [16]. Its selection was
motivated by two different reasons. First, it offers a
representative behavior of the approximation algorithms with
errors arbitrarily close to zero at an acceptable implementation
cost for testing purposes. Second, it is a computationally and
memory intensive algorithm, and thus it is suitable as the
benchmark for testing different programming
implementations.

The data acquired in the presented research can be useful at
least for the following purposes:

i) Creating recommendations for selection and
implementation of the algorithms for solving 0-1
knapsack instances that arise in practical applications.

ii) Developing guidelines for possible future research
through understanding the limitations and bottlenecks
of the current algorithms.

1Dušan B. Gajić is with the Computational Intelligence and
Information Technology Laboratory, Department of Computer
Science, Faculty of Electronic Engineering, A. Medvedeva 14, 18000
Niš, Serbia, E-mail: dusan.gajic@elfak.rs

273

II. EXACT ALGORITHMS FOR THE 0-1 KNAPSACK
PROBLEM

First exact algorithms for the 0-1 knapsack problem were
developed in the 1950s, using the dynamic programming
paradigm developed by Bellman [4].

Kolesar in 1967 was the first one to construct a branch-and-
bound algorithm for the 0-1 knapsack problem (for the best
algorithm created through this approach see [12]). Branch-
and-bound algorithms can effectively deal only with small and
easy problem instances [11].

Balas and Zemel [3] proposed to randomly set the optimal
values of some of the decision variables, and then focus the
enumeration on the most promising ones. The subset of the
items built in this way is called the core. The core problem
can then be solved by either heuristics or branch-and-bound
algorithms. This approach proved to be helpful in solving
larger problem instances.

Martello, Pisinger and Toth [10] proposed a hybrid
technique of combining dynamic programming with tight
bounds. This algorithm, called the combo algorithm, has the
theoretical worst-case time complexity of O(nW), but it has
proven in practice to be the state of the art in solving 0-1
knapsack problem instances to optimality [8], [10], [11]. As a
consequence of this fact, an implementation of the combo
algorithm in C by Pisinger, available from [7], was chosen as
the one of the subjects of the tests that were conducted in the
presented research.

III. APPROXIMATION ALGORITHMS FOR THE 0-1
KNAPSACK PROBLEM

An approach based on settling for an approximate solution
to the 0-1 knapsack problem offers reasonable algorithm
running times, even for the problem instances with
exponentially-growing values and weights.

A reasonable way to measure the distance between an
approximate and an optimal solution is the relative
performance ratio ρ which bounds the value of maximum ratio
between an approximate and an optimal solution. For
maximization problems, relative difference or error ε is
defined as 1-ρ. Thus we refer to (1-ε)-approximation
algorithms when the performance ratio of an approximate
solution to an optimal one is larger than or equal to 1-ε. An
algorithm is an ε-approximation scheme if it is a (1-ε)-
approximation algorithm for every input value of ε > 0.
Further, an algorithm is said to be a polynomial time
approximation scheme, abbreviated PTAS, if, for each fixed
ε > 0, its running time is polynomial in the input size n. If the
previous definition is expanded in a way to require that the
running time of an algorithm is polynomial both in n and in
1/ε, we get a fully polynomial time approximation scheme,
abbreviated FPTAS.

The binary knapsack problem is a member of a “fortunate”
class of NP-complete problems in terms of approximation,
i.e., polynomial time approximations with errors arbitrarily
close to zero exist for it. The first FPTAS for the knapsack
problem was presented in 1975 [5]. A FPTAS by Keller and

Pferschy [8] has recently improved on all of the previous
schemes, but only under the assumption that n ≥ 1/ε and at a
high implementation cost, due to the fact that the algorithm is
fairly complicated (as stated by the authors themselves in [8]).
Based on this fact, as well as the other reasons already stated
in Section 1, a FPTAS described by Vazirani [16] was
selected for implementation.

Basically, all of the fully polynomial time approximation
schemes for the 0-1 knapsack problem follow the same
approach of scaling values of items in order to reduce the
number of different total sums of values, and then apply
dynamic programming by values to a scaled instance. For the
implemented algorithm, this scaling of the values of items is
done in the following way:

⎥
⎦

⎥
⎢
⎣

⎢
⋅=
ε
n

v
vv i

i
max

* (3)

where 0>ε and ivv maxmax = , },...,1{ ni∈
To sum up, the design of almost all known approximation

schemes is based on the idea of trading accuracy for time. The
given problem instance is transformed into a less “precise”
one, depending on the concrete value for ε, which is then
solved exactly by means of dynamic programming. The
question whether PTAS or FPTAS is the best scheme we can
hope for when dealing with an NP-hard problem is difficult
and it has no clear and straightforward answer [16].

IV. PROGRAMMING IMPLEMENTATIONS AND
COMPUTATIONAL EXPERIMENTS

In order to conduct the experiments, a test generator for
different types of input instances had to be first built. The C++
test environment using this generator was constructed in a
generic way, so that it can be reused. It allows observations of
behavior of a wide range of algorithm implementations for
different problem sizes, instance types, and data ranges.
Problem instance sizes used in testing span from 50 to 10 000
items, and data range R takes value from the following set:
{103, 105, 107}. Generated instance types are in accordance
with test data sets presented in [8], and they are as follows:

a) Uncorrelated: the weights wi and the values vi are
distributed uniformly random in [1, R].

b) Weakly correlated: the weights wi are distributed
uniformly random in [1, R], and the values vi are set in [wi -
R/10, wi + R/10] and vi ≥ 1.

c) Strongly correlated: the weights wi are distributed
uniformly random in [1, R], and the values vi are set to vi = wi
+ R/10.

d) Subset-sum: the weights wi are distributed uniformly
random in [1, R], and the values vi are set to vi = wi.

For each of the instance types, data ranges, and problem
sizes, 100 input instances were generated. The knapsack
capacity was set to a value of: W = 0.5∑ =

n
i iw1 . All of the

experiments were done using a PC with Intel Core i7 920
quad-core processor and 4 GBs of RAM, running a 64-bit
Kubuntu 9.10 operating system with Linux kernel 2.6.31.19.
The C/C++ source code was compiled using the GNU
Compiler Collection (gcc), version 4.4.1. The CPU times,

274

appearing in all of the tables in this section, correspond only
to the execution of the algorithms themselves and do not
include time used for test generation and I/O operations.

The combo algorithm was tested first. The test results for
the computationally easy instances are presented in Table I,
and for the computationally hard ones in Table II. An in-depth
explanation of why the uncorrelated and the weakly correlated
instances are easier for computation than the strongly
correlated and the subset-sum instances can be found in [8]. It
is important to state here that the problem instances that are
most often met in practice correspond to the weakly correlated
type. The test results clearly show that the combo algorithm
has an outstanding performance for almost all of the instances.
But, it also has its limitations, as we can see from Table II. It
cannot deal with instances that are both computationally hard
and large in range (R ≥ 107). This was expected as a
consequence of the NP-hardness of the 0-1 knapsack problem.

TABLE I
COMBO ALGORITHM, EASY INSTANCES, CPU TIMES [MILLISECONDS],

n - INPUT SIZE, R - DATA RANGE

R
n

uncorrelated weakly correlated
103 105 107 103 105 107

50 0.01 0.01 0.01 0.03 0.03 0.04
100 0.02 0.02 0.02 0.04 0.06 0.06
500 0.05 0.06 0.06 0.10 0.22 0.25

1000 0.07 0.09 0.08 0.13 0.46 0.47
5000 0.27 0.35 0.37 0.30 2.26 2.56

10000 0.38 0.72 0.76 0.73 4.42 6.02

TABLE II
COMBO ALGORITHM, HARD INSTANCES, CPU TIMES

[MILLISECONDS], n - INPUT SIZE, R - DATA RANGE, – STANDS FOR
ALGORITHM TERMINATED WITH NO RESULT

R
n

strongly correlated subset-sum
103 105 107 103 105 107

50 0.15 3.59 - 0.09 7.83 -
100 0.26 5.15 - 0.09 2.61 -
500 0.42 2.80 - 0.08 1.58 -

1000 0.50 2.85 - 0.06 1.65 -
5000 1.13 3.21 - 0.11 1.81 -

10000 1.82 3.71 - 0.19 1.98 -

The second in line for testing was the FPTAS. The results

of the tests done with the fully optimized C++ implementation
operating on the easy and the hard instances are given in
Tables III and IV, respectively. The tests clearly show that
satisfying for an approximate solution makes the job much
easier, when dealing with large data. The FPTAS has stable
performance for all of the instance types, while the running
time grows fast with the size of the input. The identified
bottleneck of the algorithm is the memory consumption in the
dynamic programming phase, which limits application of this
concrete implementation to instances with n < 1000. More
advanced and complicated schemes, e.g., the one described in
[8], share the same general type of limitation, but improve on
the upper limit value for n.

TABLE III
FPTAS, EASY INSTANCES, CPU TIMES [MILLISECONDS], ε = 0.1,

n - INPUT SIZE, R - DATA RANGE, – STANDS FOR ALGORITHM
TERMINATED (OUT OF MEMORY)

 R
n

uncorrelated weakly correlated
103 105 107 103 105 107

50 2.12 2.33 2.44 2.27 2.20 2.30
100 16.99 18.84 18.42 17.97 17.86 17.75
500 2.2

×103
2.3

×103
2.1

×103
2.2

×103
2.1

×103
2.0

×103

1000 - - - - - -

TABLE IV
FPTAS, HARD INSTANCES, CPU TIMES [MILLISECONDS], ε = 0.1,

n - INPUT SIZE, R - DATA RANGE, – STANDS FOR ALGORITHM
TERMINATED (OUT OF MEMORY)

 R
n

strongly correlated subset-sum
103 105 107 103 105 107

50 2.76 2.77 2.79 2.37 2.43 2.49
100 20.32 20.62 20.66 18.87 18.50 18.74
500 2.5

×103
2.5

×103
2.3

×103
2.2

×103
2.2

×103
2.1

×103

1000 - - - - - -

 The second batch of experiments was conducted in order to
acquire information on how much decisions concerning
implementation issues affect actual performance of algorithms
for the 0-1 knapsack problem. More precisely, the following
effects on performance were measured and analyzed:

- application of templates from the C++ STL
- application of code tuning techniques
- application of compiler optimizations
The Standard Template Library, abbreviated STL, is the

first library of generic algorithms and data structures for C++,
created by Stepanov and Lee [15]. The STL was developed
with four main ideas in mind [15]: generic programming,
abstractness without loss of efficiency, the Von Neumann
computation model, and value semantics. In the light of the
presented research, it sounded interesting to see how well
does the idea of enabling high level abstraction without loss of
efficiency hold in the context of an algorithm implementation
for the binary knapsack.

Code tuning is a single name for a set of techniques with a
common goal of improving performance of an implemented
algorithm. Code tuning techniques are mostly motivated by
the Pareto principle, and they are described in detail in [13],
[14]. The techniques applied in the experiments reported here
include: minimization of array references and work inside
loops, loop fusion, strength reduction, elimination of system
routines and common sub-expressions, etc.

 Modern compilers offer various levels of compile-time
optimizations [2]. Some authors suggest that these
optimizations are superior to any of the code tuning
techniques [13] and that a programmer should just write clear
code and leave optimizations to compilers. Therefore, it was
of matter of interest to this research, to test these claims in
practice, in the context of the 0-1 knapsack problem.

275

Table V presents the results of the tests conducted with
C++ implementations of the FPTAS. The FPTAS was chosen
as the benchmark because it features intense numerical
computations and has a high demand on memory. The tests
were done using weakly correlated 0-1 knapsack instances,
where R = 105, ε = 0.1, which best correspond to problems
most frequently met in practice. Compiler optimizations used
were invoked with the flag –O3 for gcc compiler, and they
include options like the function in-lining, loop unswitching,
tree vectorization, etc. Compiler optimization techniques are
described in detail in [2]. The columns in Table V represent
the following algorithm implementations:

A. code using the STL, without code tuning and
compiler optimizations

B. code not using the STL, without code tuning and
compiler optimizations

C. code not using the STL and compiler
optimizations, with code tuning

D. code using the STL and compiler optimizations,
without code tuning

E. code not using the STL, with code tuning and
compiler optimizations

TABLE V
CODE IMPROVEMENT, CPU TIMES [MILLISECONDS], n - INPUT SIZE

n

A

B

C

D

E

time
saved
A-E

50 20.56 10.86 8.31 2.43 2.20 89%
100 146.86 80.02 67.23 18.62 17.86 88%
500 17924.01 9616.97 8110.82 2293.84 2088.03 88%

The most important conclusions that can be drawn from the

presented data are as follows:
i) Application of the STL classes without the compiler

optimizations leads to the significant loss of
performance (compare columns A and B in Table V).
Modern C++ compilers are tuned to minimize any
abstraction penalty arising from heavy use of the
STL. Therefore, the STL classes do offer higher
abstraction without loss of efficiency, but only when
coupled with compile-time optimizations.

ii) Code tuning techniques offer some speedup, but their
effects are almost completely canceled when
compiler optimizations are enabled. This happens
because most of the tuning techniques are actually on
the list of optimizations that modern compilers can
offer. Therefore, code tuning proved to be a time-
consuming method that provides only a small
speedup in the case of the compile-time optimized
C++ FPTAS implementation.

iii) Application of the compiler optimizations alone
leads to the time savings of 87-88%, so it can be
stated that they are the single most important
improvement factor in the case of the C++ FPTAS.

We can conclude from the experimental data that an
increase in performance of almost an order of magnitude can
be achieved through optimization solely at the implementation
level, at least for the tested algorithm.

V. CONCLUSION

The first set of the computational experiments with the
programming implementations of the algorithms for the 0-1
knapsack problem identified some of the principal limitations
and bottlenecks of the two analyzed algorithms, one exact and
one approximate. This information can be helpful in
estimating which problem instances can be efficiently handled
in today’s practical applications. Further research in
algorithms that combine tight bounds with dynamic
programming, like the combo algorithm, looks promising.

The second part of the research dealt with the
implementation issues and their effects on the performance of
the 0-1 knapsack FPTAS. The recorded results are in line with
the statement from Knuth [9]: “Premature optimization is the
root of all evil”. Compile-time optimizations proved to be by
far the most important factor in the improvement of the C++
FPTAS implementation. Code tuning techniques, applied in
the code construction phase, offer some speedup, but often at
the price of lowering code readability. Further, modern
compilers are better at optimizing straight than intricate code,
and intricacies are frequently created through tuning. So,
another sound advice might also come in the following words
[1]: “Programs must be written for people to read, and only
incidentally for machines to execute”.

REFERENCES

[1] H. Abelson, G. Sussman, Structure and Interpretation of
Computer Programs, MIT Press, 2nd edition, 1996.

[2] A. Aho, M. Lam, R. Sethi, J. Ullman, Compilers: Principles,
Techniques, and Tools, Addison Wesley, 2nd edition, 2006.

[3] E. Balas, E. Zemel, “An algorithm for large zero-one knapsack
problems”, Operations Research, no. 28, pp. 1130-1154, 1980.

[4] R. E. Bellman, Dynamic Programming, Princeton University
Press, Princeton, NJ, 1957.

[5] O. Ibarra, C. Kim, “Fast approximation algorithms for the
knapsack and sum of subset problems”, Journal of the ACM, no.
22, pp. 463-468, 1975.

[6] D. Gajić, Algorithms for NP-complete Problems, Master’s
thesis, Faculty of Electronic Engineering, Niš, 2009.

[7] http://www.diku.dk/~pisinger/codes.html
[8] H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems, 1st

edition, Springer, 2004.
[9] D. Knuth, „Structured Programming with go to Statements“,

Computing Surveys, vol. 6, no. 4, 1974.
[10] S. Martello, D. Pisinger, P. Toth, “Dynamic Programming and

Strong Bounds for the 0-1 Knapsack Problem”, Management
Science, vol. 45, no. 3, pp. 414-424, 1999.

[11] S. Martello, D. Pisinger, P. Toth, “New trends in exact
algorithms for the 0-1 knapsack problem”, Technical Report
97/10, DIKU, University of Copenhagen, 1997.

[12] S. Martello, P. Toth, Knapsack Problems: Algorithms and
Computer Implementations, John Wiley & Sons, 1990.

[13] S. McConnell, Code Complete: A Practical Handbook of
Software Construction, Microsoft Press, 2nd edition, 2004.

[14] M. Scott, Programming Language Pragmatics, Morgan
Kaufmann, 3rd edition, 2009.

[15] A. Stepanov, M. Lee, “The Standard Template Library”, HP
Laboratories Technical Report 95-11(R.1), 1995.

[16] V. Vazirani, Approximation Algorithms, Springer, 1st edition,
2001.

276

