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  Abstract – In this paper different elitism strategies are 
considered. They are combined in an evolutionary algorithm, 
designed to solve discrete optimization problems. The 
computational complexity of the proposed algorithm is 
investigated and evaluated. Conclusions about the use of elitism 
are drawn. 
 

Keywords – Evolutionary algorithms, Elitism, Discrete 
optimization. 
 

I. INTRODUCTION 

In this paper is considered integer programming problem, 
which can be stated in the following form:  

       Min  F(x)               (1) 
subject to:   gi(x) ≤ 0;    i = 1,…,m;           (2) 

       lj ≤ xj ≤ uj;    j = 1,…,n;           (3) 
       x ∈ Zn,            (4) 

where x is an n-dimensional vector of variables xj, j = 1,…,n; 
which accept discrete values only. By lj and uj are denoted the 
bounds (lower and upper) of xj, and F(x) is the multimodal 
objective function. There is no necessary F(x) to posses 
accessible to calculation derivatives in an explicit analytical 
form. The functions gi(x), i = 1,…,m; are  convex nonlinear 
functions and m is the number of nonlinear constraints (2) 

The integer programming problems belong to the class of 
NP-hard optimization problems (see [2, 6]). There does not 
exist an exact algorithm, which can solve these problems in 
time, depending polynomially on the problem input data 
length or on the problem size. For this reason many efficient 
approximate evolutionary algorithms and metaheuristic 
methods have been created to find out the global optimum of 
such complex optimization problems. The objective function 
(1) with integer variables is usually multimodal function. The 
approximate algorithms may not be able to find out the exact 
global optimal solution. A possible strategy to solve such 
complex optimization problems is to combine the qualities of 
a directional type method with the good features of a 
population based (evolutionary) algorithm. The directional 
type steps may accelerate the convergence in regular regions 

of the search space, while the evolutionary algorithms are able 
to escape the trap of local optima, exploring the whole 
feasible domain. For precisely locating the optimal solution(s) 
some kind of local search procedure may be included in the 
optimization algorithm.  

The population based algorithms (see [5]) handle a 
population of individuals and make them evolve according to 
some rules that are clearly specified for each algorithm. At 
each iteration periods of self-adaptation (intensification of the 
search process in some region of the search space) alternate 
with periods of co-operation (information collective gathered 
during the search process is used to direct further the search). 
The periods of self-adaptation correspond to execution of 
mutation, improvement or local search procedure, and the 
periods of co-operation are connected with the selection, 
crossover, trace updating or generation of trial points, i.e. with 
some (explicit or implicit) sharing among the individuals 
useful information gathered during the search. The population 
based algorithms are organized according the following 
general scheme: 

 
Generate an initial population of individuals; 

While no stopping condition is met do 

      Co-operation, 

      Self-adaptation, 

EndWhile. 

   Figure 1: General scheme of a population based algorithm 

Many metaheuristic algorithms correspond to this 
framework and can be described within it. 

One major difficulty with the creation of global search 
algorithms is to overcome the premature convergence towards 
local optima. To obtain the global optimum of the problem at 
hand a diversification phases of the search process are 
necessary, so that new areas of feasible domain, that are 
remained still unexplored, can be investigated. This means 
that after each intensification phase and locating a local 
optimum the search procedure has to steer the individuals 
away from the just explored region and from the found local 
optimum, as well as away from all other known local optima 
and their corresponding regions. During the diversification 
phase the individuals are modified independently but with 
unexpected results in the sense that they are not necessarily 
improved. A famous example for diversification is the tabu 
list strategy in the tabu search algorithms, where some 
characteristics of solutions or movements (steps in given 
directions) are stored as forbidden (tabu) for certain number of 
iterations. In this manner are avoided the cycling and the trap 
of local optimality. In general the metaheuristic algorithms 
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alternate phases of intensification with diversification phases. 
To obtain guaranteed the global optimal solution these 
algorithms should perform a search process, exploring the 
whole feasible domain, i.e. they should perform 
systematically diversification after each intensification period. 

Another major difficulty with the creation of global search 
algorithms is to obtain good convergence speed, because they 
could converge very slowly. This could be achieved by means 
of some kind hybridization. To create successful and efficient 
global search methods the researchers very often make 
combinations of two or more metaheuristics in hybrid 
methods. Such techniques have been proposed in [1, 3, 4, 7]. 
For example tabu search can be coupled with directional 
search and scatter search approaches. Another important way 
to accelerate the performance of an evolutionary algorithm is 
to use the features of the best individuals obtained during the 
search process and the historically good information they have 
accumulated, combining them to generate new offspring 
individuals for the next population, i.e. to use some kind of 
elitism. 

In this paper we propose an evolutionary algorithm for 
solving the problem (1)-(4), which includes different elitism 
strategies for selection the parent individuals, generating the 
next population in the search process. 

 

II. ELITISM STRATEGIES 

A. Scatter search elitism strategy 

Such kind strategy has been proposed for the first time by 
F. Glover (see [3]). Let we have a population P containing p 
individuals or solutions in the feasible domain for the 
considered optimization problem (1-4). The initial population 
P can be randomly generated around the Tchebicheff center 
xtch of the feasible domain, determined by the constraints (2)-
(3). Let the feasible domain be denoted by X. The Tchebicheff 
center xtch ∈ X is the point located at the maximal Euclidean 
distance from the constraint surfaces. We assume that the 
Tchebicheff center is obtained by means of a method for 
solving the relaxed convex problem with continuous 
variables. Then xtch is rounded to the nearest integer point ixtch.  

The objective function values should be calculated for each 
individual in the population P. Using this information the 
most attractive elements of P can be selected and used to 
generate new elements that replace previous members of P. 
Elite elements (those with especially good objective function 
values) become part of a special historical collection that is 
used at the final stage of the search to contribute to the 
generation of final solution. The following sets are referenced 
and updated at each iteration: 

T – a set of trial solutions; 
S – a set of s selected current generators; 
H – a set of elite historical generators, consisting of h best 

(with highest evaluation) solutions generated historically 
throughout the search. On the first iteration H will consist of 
the h best elements of S. 

The scatter search strategy consists of the following steps: 

Step 1.  Set i = 0 and itlim = itl, where itl is a positive 
integer. Generate initial set of trial solutions T(i).  

Step 2. Select  the best s solutions from T(i) and create S(i). 
             Create set of elite historical generators H(i), 

including the h best elements of S(i) in H(i). 
Step 3. Let x and y are two solutions, x ∈ S and y ∈ S. For 

each pair (x, y)j consider the line through x and y, given by the 
expression  

l(t) = x + t(y–x),    (5) 
where t is scalar weight.  

The solutions l(–1/3), l(1/3), l(2/3), l(4/3) are generated. 
Each of them is rounded of to its nearest integer feasible 
solution and are obtained four new solutions: xj(1), xj(2), xj(3), 
xj(4); 

Calculate for each generated offspring solution its objective 
function value.  

Step 4. Update the set H(i) as follows: If some generated 
offspring solution has better objective function value than 
some solution in H(i) replace the corresponding solution in 
H(i) by this solution.  

Step 5. Set i = i+1. If i > itlim, then STOP (the procedure 
terminates), else use the trial solutions T(i-1) to generate new 
trial solutions T(i) and go to Step 2. 

 
 

B. Neighbor Si sets – based elitism strategy 

The main idea of this strategy is to select a given percent of 
the best solutions included in j different neighbor sets Si, 
i=1,…j; (i.e. in j different neighbor areas of the search space) 
and to create a new population PS sharing their accumulated 
information. Then each pair solutions (x, y), where x ∈ PS and 
y ∈ PS, is used as a parent pair to generate four new solutions 
analog to Step 3. in the Scatter search strategy. The 
corresponding procedure is described by the following steps: 

Step 1.  Let s be the cardinality of each set Si. Select  ⎣s/j⎦ 
best solutions from each of neighbor sets Si, i=1,…j; (here ⎣v⎦ 
denotes the integer part of v) and create the new population 
PS. Create set of elite historical generators H* ≡ PS. 

Step 2. Let x and y are two solutions, x ∈ PS and y ∈ PS. 
For each parent pair (x, y)p consider the line through x and y, 
given by the expression (5):  l(t) = x + t(y–x), where t is scalar 
weight.  

The solutions l(–1/3), l(1/3), l(2/3), l(4/3) are generated. 
Each of them is rounded of to its nearest integer feasible 
solution and are obtained four new solutions: xp(1), xp(2), xp(3), 
xp(4); 

Calculate for each generated solution its objective function 
value.  

Step 3. Update the set H* as follows: If some generated 
offspring solution has better objective function value than 
some solution in H* replace the corresponding solution in H* 
by this solution. STOP (the procedure terminates). 

III. THE PROPOSED ELITISM BASED EVOLUTIONARY 
ALGORITHM EEA 

The idea of the proposed EEA algorithm is the following: 
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Let the feasible domain be denoted by X. The Tchebicheff 
center xtch ∈ X is the point located at the maximal Euclidean 
distance from the constraint surfaces. We assume that the 
Tchebicheff center is obtained by means of a method for 
solving convex problems with continuous variables. Then xtch 
is rounded to the nearest integer point itch. A regular simplex 
with n+1 vertices is generated around the solution itch. There 
are (n+1) combinations of n vertices, correspondingly for each 
facet of the simplex. The feasible domain X is divided in 
(n+1) sub-regions as follows: The rays starting at the weight 
center of all simplex vertices cs and passing through the 
vertices v(j), j=1,…,n; belonging to each facet determine K(i) 
cones, i = 1,…, n+1; in the feasible domain. Similar division 
of the feasible region is proposed in [4]. The iterative 
procedure generates at each iteration k a number i of trial 
points sets T(i)k for each facet of the simplex i=1,…,n+1; 
Each set T(i) includes obtained by rounding off (to the nearest 
integer solutions) of points along the rays rj starting at cs and 
passing trough v(j), as well as along the ray rci, starting at cs 
and passing through the weight center cvi of the current facet. 
By means of each T(i) a set Si of s selected current generators 
is created and the described scatter search strategy is 
performed on it. All Si sets at the k-th iteration are used that to 
perform the Si sets – based elitism strategy. Than the sets of 
elite historical generators Hk and H*k are compared and in 
case Hk contains some better solutions than a solution in H*k, 
the better solution replaces the worse. At the end of all 
iterations the procedure finishes by applying the scatter search 
strategy on the final H*. 

The steps of EEA algorithm are presented below: 
 

Step 1. Find the Tchebicheff center xtch and round off it to the  
             nearest feasible integer solution itch. 
Step 2. Generate a regular simplex with n+1 vertices, using  
             itch as one vertex. Generate the other vertices on the  
             base of the elementary geometry in the following  
             manner: 
             ⎛  itch j + ϕ1  if j≠i 
  v(i)

j =  ⎨     (6) 
             ⎝  itch j + ϕ2 if j=i 
 

  ϕ1  =  α.[ 
2

1)1(
n

nn −++  ]   (7) 

  ϕ2  =  α.[ 
2

1)1(
n

n −+  ]   (8) 

       Let itch be denoted as v(0). Round off each v(j), j =  
             1,…,n; to its nearest integer point.  
Step 3. Calculate the weight center of the simplex:  

   cs = 
1
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=
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   (9) 

            Round off cs to its nearest integer point. Set  i = 1. 
Step 4. For  i = 1,…, n+1; explore the cone K(i) as follows: 

Create a set of trial points T(i) , including in it the 
simplex vertices of the current simplex facet and their 
weight center cv, where  

   cv = 
n

v
i

K
i

v

i∑
∈ )()(

)(

   (10) 

Round off cv to its nearest integer point. 
Calculate the objective function values of the trial 
solutions x ∈ T(i). Create the set Si of the best s 
members x ∈ T(i) . 

Step 5. Perform the described Scatter search strategy on the  
            set Si. Update the set of elite historical generators Ho. 
Step 6. Perform the described Si –based elitism strategy. 

Update the set of elite historical generators Ho*. 
  Let: xold(j) = v(j), j = 1,…, n; and xold(0) = cv. 
  Calculate p(j) =  γ(xold(j) –  cs), j = 1,…, n; and  p(0) =  

γ(cv–cs), where γ is a scale multiplier, tuned according 
to the concrete problem. 

Step 7. 
  ITERATION   
  Let the iteration has the current number ik. Calculate 
the points xnew(j) = xold(j) + ik.p(j),  j= 0,…, n; Round off each 
xnew(j) to its nearest integer point. In case there is a violated 
constraint from the system (2)-(3) reduce the corresponding 
p(j) as follows: 
  - If a constraint of type xk +a = 0 is violated, where a 
can have positive or negative value, then the corresponding 
component pk of p(j) ,  is used to reduce p(j): 

   p(j) =   |
k

k
p

pa − | p(j)   (11) 

  - If a constraint of type gi(x) ≤ 0 is violated then    p(j) 
= 0.8 p(j) . If it is necessary repeat this reduction until the 
rounded off integer xnew(j) becomes feasible. 
  - If there are more than one constraints, violated by 
p(j) , then chose the most reduced vector p(j), so that the 
rounded off integer xnew(j) becomes feasible. 
  Use the generated solutions xnew(j) as trial solutions. 
For each facet include the corresponding trial solutions in the 
set  T(i)

ik. Calculate also ik new trial points on each segment 
segi between cv and v(i), where each segment segi is divided 
to (ik+1) parts of equal length. The new generated ik solutions 
on each segment segi are rounded off to the corresponding 
nearest integer feasible point and are included in T(i)

ik . 
Evaluate the objective function values of the trial solutions x 
∈ T(i)

 ik . 
Perform the described Scatter search strategy on the set Si. 
Update the set of elite historical generators H ik. 
Perform the described Si –based elitism strategy. Update the 
set of elite historical generators H ik *. 
  ENDofITERATION 

Repeat the ITERATION until it is not possible to 
generate any new feasible points by means of  p(j),  
j=0,…, n;  

Step 8. Compare  all obtained Hik and H*ik. In case Hik 
contains some better solutions than a solution in H*ik, the 
better solution replaces the worse. Create a final population 
H* of the solutions in all H*ik. Perform the described Scatter 
search strategy on the set H*. Find the best generated solution 
x*. STOP. 

The computational complexity of EEA algorithm is 
considered and evaluated as follows: 
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Theorem: The EEA algorithm has a polynomial 
computational complexity O(n4). 

Proof: There are n+1 different cones as described in Step 
4. On each facet are generated n+1 trial solutions and 
additional ik.n trial solutions, where ik is the iteration number. 
There are s(s–1)/2 combinations of two solutions belonging to 
Si, hence s(s–1)/2 segments will be considered. The scatter 
search strategy evaluates 4 solutions for each segment, i.e. 
2s(s–1) new solutions. The same number of new solutions is 
generated also in the Si – based elitism strategy. The scatter 
search strategy is applied n+1 times at each iteration and the 
Si – based elitism strategy – only once (see Step 7.). Hence at 
each iteration are evaluated no more than 2(n+2)s(s–1) 
solutions, where s depends linear of n (see Step 4). There are 
performed ik iterations. Depending on the feasible domain we 
could expect that ik ~ n. Then the total number of evaluated 
solutions during the performance of EEA algorithm is propor-
tional to (n-1)(n+2)n2. Hence the Theorem is proved.  

IV. CONCLUSIONS 

The presented new evolutionary method EEA has the 
following good features and advantages: 

• During the exploration of each sub-region the EEA 
algorithm systematically diversifies the search process, 
avoiding in this manner the trap of local minima. 

• The EEA algorithm performs search in all defined sub-
regions of the search space, so that the whole feasible 
domain is explored. 

• The formed final population contains diverse enough 
individuals, so that it is expected that the final search 
phase would lead to the global optimal solution. 

• The EEA algorithm can be efficient in comparison to 
other global search algorithms, because it is an elitism 
based polynomial algorithm. The non elitism procedure 
based on the same steps would evaluate 2 or three times 
more solutions at each iteration. Hence it will perform 
two or three time slower than EEA algorithm. 

• The populations used in EEA algorithm have relatively 
small size, so that no great memory will be necessary 
for its implementation. 

• The EEA algorithm guarantees the feasibility of the 
obtained solutions. 

• A great part of the integer points located near or on the  

rays forming each cone, which have been explored 
during the search in the corresponding sub-region at the 
current iteration, can be used during the exploration of 
the next sub-region. This may be used for creation of 
efficient program realizations of EEA algorithm. 

The EEA algorithm will be tested on a set of test examples 
and the results will be compared with that of non elitism based 
evolutionary algorithms. 
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