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  Abstract – An interactive evolutionary algorithm is proposed 
to solve multiple objective convex integer problems. It combines 
two different strategies helping the Decision Maker (DM) to 
choose good preference direction and to focus the search process 
around a desired part of Pareto optimal front. These strategies 
lead to drastic reducing the number of iterations for moving the 
population to the set of Pareto-optimal points.  An illustrative 
example is presented. 
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I. INTRODUCTION 

In this paper is considered the multiple objective convex 
integer optimization problem, which can be stated in the 
following general form: 

Minimize   f(x) = [ f1(x), f2(x), …, fk(x)]T        (1) 
subject to:  gj(x) ≤ 0,            j = 1,2,..., m; (2) 

    xi
(L) ≤ xi ≤ xi

(U),  i = 1,2,…, n; (3) 
    x ∈ Zn,    (4) 

where gj(x), j = 1,2,…, m; are convex functions and fi(x), i = 
1,2,…, k; are nonlinear functions.  

Below in the text of the paper we consider the term 
“solution” as a variable vector and the term “point” as a 
corresponding objective vector. 

A solution x ∈ Zn is a vector of n decision variables: x = 
(x1, x2 , …, xn)T. The value   xi

(L) is the known lower bound and 
the value xi

(U is correspondingly the upper bound of variable 
xi.  The solutions satisfying the constraints (2)-(4) constitute a 
feasible decision variable space V ⊂ Zn. The objective 
functions (1) constitute a k-dimensional space, called 
objective space F ⊂ Rk. For each solution x in the decision 
variable space, there exists a point f ∈ Rk in the objective 
space, denoted by f(x) = f = (f1, f2, …, fk)T. 

The problem (1-4) does not posses an analytically defined 
optimal solution. To solve it vectors, containing values of 
each objective are compared during an optimization 
procedure. In this case the usual concepts are those proposed 
by Pareto [12]. 

The domination between two solutions is defined as follows 
(see [1, 3, 10]): 

Definition 1. A solution x(1) is said to dominate the other 
solution x(2), if both the following conditions are true: 

1. The solution x(1)  is no worse(say the operatorp  
denotes worse and the operator f denotes better) than x(2) in 
all objectives, or fj(x(1)) p  fj(x(2)) for j = 1,2,..., k;. 

2. The solution x(1)  is strictly better than x(2) in at least 
one objective, or fj(x(1)) f  fj(x(2)) for at least one j∈{1,2,..., k}.   

All points which are not dominated by any other point f ∈ 
F are called the non-dominated points of class one, or simply 
the non-dominated points. Usually the non-dominated points 
together make up a front in the objective space and are often 
visualized to represent a non-domination front. The points 
lying on the non-domination front, by definition, do not get 
dominated by any other point in the objective space, hence 
they are Pareto-optimal points (together they constitute the 
Pareto-optimal front), and the corresponding variable vectors 
are called Pareto-optimal solutions.  

There are two ideal goals in the multi-objective 
optimization: 

1. Find a set of solutions which are diverse enough to 
represent the entire range of the Pareto-optimal front, and 

2. Find a set of Pareto-optimal solutions, which satisfy 
in the best way the DM’s preferences. 

In this paper is proposed an interactive algorithm to solve 
the problem (1-4). The interactive algorithms are the most 
popular in solving multi-objective optimization problems. 
They consist of two alternate phases: 1. Interaction (dialogue) 
with the DM and 2. Generating solutions. Usually an 
appropriate single objective convex integer optimization 
problem is solved during the second phase. Such problems 
belong to the class of NP-hard problems (see for example [5, 
11]). There does not exist an exact algorithm, which can solve 
these problems in time depending polynomially on the 
problem input data length or on the problem size. For this 
reason many researchers investigate approximate algorithms 
with polynomial computational complexity, which solve such 
kind optimization problems. For the past 20 years 
evolutionary multiple objective optimization (EMOO) 
methodologies have demonstrated their usefulness in finding a 
set of near Pareto-optimal solutions [1, 2, 4]. As a sequence 
many source codes – both commercial and free have been 
created and the EMO algorithms obtained wide application. 
During the World Congress of Computational Intelligence 
(WCCI) in Vancouver 2006, the EMOO has been evaluated as 
one of the three fastest growing fields of research and 
application among all computational intelligence topics.  

In principle the evolutionary optimization (EO) algorithms 
use a population-based approach, in which the iterations are 
performed on a set of solutions (called population) and more 
than one solution is generated at each iteration. The main 
positive features making popular the EO algorithms are the 
following: (i) They do not require any derivative information; 
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(ii) EO algorithms are relatively simple to implement; (iii) EO 
algorithms are flexible and robust, i.e. they perform very well 
on a wide spectrum of problems (see [6]); The use of a 
population in EO algorithms has a number of advantages (see 
[1]): 1) it provides an EO procedure with a parallel processing 
power, 2) it allows EO procedures to find multiple optimal 
solutions, thereby facilitating the solution of multi-modal and 
multi-objective optimization problems, and 3) it provides an 
EO algorithm with the ability to normalize decision variables 
(as well as objective and constraint functions) within an 
evolving population using the best  minimum and maximum 
values in the population.  

Some important disadvantages of EMOO algorithms are: (i) 
their convergence to the Pareto-optimal front could be slow 
and may require large number of iterations; (ii) they face 
difficulty in solving problems with a large number of 
objectives, i.e. they could obtain difficult a well representative 
set of Pareto-Optimal Solutions (see [4]). 

The number of objectives as a convergence factor is 
considered in [13]. Good approach in solving problems with 
large number of objectives is to use the EMOO methodologies 
to find a preferred and smaller set of Pareto-optimal solutions, 
instead of the entire front [4]. In this way the DM can 
concentrate to explore only the regions of Pareto-optimal 
front, which are of interest to her/him. An accelerating 
technique for population based algorithms is proposed in [7]. 
A technique for quickly moving the population to the Pareto-
optimal front is proposed in [8]. Some hybrid EMOO 
algorithms have been recently proposed to overcome the 
second mentioned disadvantage (see [4, 9]). They expand the 
use of classical multi-objective optimization procedures (see 
[10]) like reference point-, reference direction- and other type 
methods, proposing new approaches and hybrid techniques.  

We propose two strategies for quickly moving the whole 
population to the Pareto-optimal front. They are included in 
the proposed algorithm for multiple objective convex integer 
problems (MOCIP-algorithm) and lead to drastic reduction of 
iteration number for convergence the search process to Pareto-
optimal front. At the same time they deal multiple preference 
conditions simultaneously and have robust performance for 
problems with large number of objectives. A specific form of 
fitness function is proposed for performing a small number of 
genetic iterations if DM considers that this may help to find 
better compromise solution. At the final phase of the search 
process we combine our approach with the reference point 
approach suggested by Wierzbicki [14]. 

II. PROPOSED REFERENCE POINT STRATEGIES 

The main idea of both proposed strategies is for given 
reference point provided by the DM to construct direction in 
the variable space, which is used to move quickly the whole 
population of solutions to the desired part of Pareto-optimal 
front – as close as possible to a given reference point.  

A. Worst point reflection strategy (WPRS) 

Let  the  reference  point   fr  is  known  and  let  we  have  a 

population   P  of   p  solutions.  Then  perform  the  following 
procedure: 

Step 1. Calculate the Euclidean distance measure in the 
criteria space between each point fi ∈ P, for i = 1,…,p;  and 
the reference point fr: 

di = ∑
=

−
k

j
frf ji j

1

2
)(   (5) 

Step 2. Determine the solution xmax, corresponding to the 
point fimax, having maximal value dimax.  Set icount = 1. Set 
itlim = const. Here const ≤ n+1; 

Step 3. Calculate the weight center c of all other solutions 
xi ∈ P, for i = 1,…,p-1; and i≠max: 

c = 
1

1

1

−

∑
−

=

p

p

i
ix

  (6) 

Step 4. Construct a direction in the variable space for 
moving the whole population to the reference point using 
reflection of solution xmax towards the weight center c: 

y = c - xmax  (7) 
Step 5. Move each solution xi ∈ P, for i = 1,…,p; in the 

following manner: 
1.) xinew = xi + y. In case the obtained xinew violates some  
     constraint from the system (2-4) change y by:  y =0.9y   
     and repeat 1.) 
2.) Round off the obtained solution xinew to the nearest  
      integer feasible solution and include it in the new  
      population Pnew. 
 At this step some newly generated solutions may coincide.  
 In this case the number of population members is reduced  
 by 1. 
Step 6. Set icount = icount + 1 and P = Pnew. If icount > 

itlim, then STOP (the procedure terminates), else go to Step 3. 
 

B. Improving direction strategy (IDS) 

Let the reference point fr is known and let we have a 
population P of p solutions. Then perform the following 
procedure: 

Step 1. Calculate the Euclidean distance measure in the 
criteria space between each point fi ∈ P, for i = 1,…,p;  and 
the reference point fr according (5). Arrange all solutions xi ∈ 
P, for i = 1,…,p;  in a list D according their di distance 
measures in an ascendant order. 

Step 2. Calculate the weight center of the first three 
solutions xi ∈ D, for i = 1, 2, 3;: 

cd = 
3

3

1,
∑

=∈ iDi
ix
  (8) 

Calculate the weight center c of all other solutions xi ∈ D, 
for i = 4,…,p; 

Step 3. Construct an improving direction in the variable 
space for moving the whole population to the reference point 
as follows: 

y = cd - c  (9) 
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Step 4. Move each solution xi ∈ P, for i = 1,…,p; in the 
following manner: 

1.) xinew = xi + αy, where α is a positive scalar. In case the  
     obtained xinew violates some constraint from the system  
     (2-4) change α by:  α =0.9α  and repeat 1.) 
2.) In case the corresponding di-value is decreased repeat  
     1.), otherwise go to 3.) 
3.) Round off the obtained solution xinew to the nearest  
      integer feasible solution and include it in the new  
      population Pnew. 
Step 5. Find all different non-dominated solutions xi∈ Pnew 

and arrange them in an ascending order of their Euclidean 
distances to the reference point fr. Then include them in the 
final population Pfin. STOP. 

III. NEW EVOLUTIONARY MOCIP-ALGORITHM 

The considered problem has a closed feasible domain 
because there are given lower and upper bounds for each 
variable (see constraint (3)). The Tchebycheff center of the 
feasible domain can be calculated and can be rounded off to 
the closest integer feasible point xch, called below rounded 
Tchebycheff center. 

The DM can give feasible or infeasible reference point(s). 
In both cases the proposed new algorithm finds a set of (near) 
Pareto-optimal solutions, which are located close to the 
supplied reference point(s). The found non-dominated points 
and their corresponding solutions during the search process 
are stored in an array LND, which is updated at each 
generation of new point. 

The proposed MOCIP-algorithm contains the following 
steps: 

Step1. Calculate the points f*1, f*2, …, f*k; and their 
corresponding solutions x*i, i=1,…,k; , where f*i is the 
optimal point for the i-th objective. To obtain these points 
solve k single objective problems with the same constraint 
system (2-4). 

Step 2. Create an initial population Po of size p, generating 
p uniformly distributed integer feasible solutions around the 
rounded Tchebycheff center xch. Here p could vary according 
the number of objectives k in the current problem. For 
example:  p=2k, when k≥50, p=3k for k ∈ [33 ÷ 50), p=4k for 
k ∈ [25 ÷ 33), p=5k for k ∈ [10 ÷ 25), etc. 

Step 3. Ask the DM to specify a reference point fr.  
Step 4. Perform WPRS.  
Step 5. Ask the DM to specify the most acceptable, as well 

the most non acceptable obtained point (corresponding xb and 
xw) Based on the direction v = xb – xw propose new reference 
point to DM, or ask her/him to specify a new reference point 
fr. 

Step 6. Perform IDS. Include all obtained non-dominated 
solutions in the population Pfin. 

Step 7. Show the obtained non-dominated points, 
corresponding to the non-dominated  solutions xi ∈ Pfin, for i 
= 1,…,pfin; to the DM.  

Step 8. Ask the DM if she/he wishes to perform small 
number genetic iterations using Pfin. If yes calculate for each 

point from Pfin utility coefficients ηi = 
*
*)(

max fifi
fixfi

−
− , i=1,…k; 

where fimax is the obtained maximal value of i-th objective 
during the search process. Calculate fitness values for the 
solutions in Pfin, and for the new generated offspring 
solutions, minimizing the following fitness function: 

Fi = ηi.di.(ndi+1)   (11) 
where di are the Euclidean distance measures in the criteria 
space between the point fi ∈ Pfin, for i = 1,…,pfin;  and the 
reference point fr. The value ndi corresponds to the number of 
points, which eventually dominate the point fi. 

Step 9. Show the solutions and their corresponding points 
in the population Pfin to the DM. Ask DM to enter a last  
reference point fr, close located to the non-dominated solution 
x ∈ Pfin. 

Step 10. Perform the procedure, suggested by Wierzbicki 
[14], to create k new reference points around fr as follows: 

fj = fr + ( x - fr). e(j), j=1,…,k; (12) 
where e(j) is the j-th  coordinate direction vector. 

Step 11. Perform simple search procedure for a better point 
along the direction ( x - fr), starting with each created 
reference point fj j=1,…,k;. 

Step 12. Ask the DM to choose final solution among the 
non-dominated solutions found during the search process, 
stored in LND. STOP. 

IV. ILLUSTRATIVE EXAMPLE 

The performance of MOCIP-algorithm is illustrated on the 
following test example: 

Min f(x) = [f1(x), f2(x), f3(x)]T, 
   f1(x) = x1

2 + 3x2
2;  f2(x) = 5x1

2 + x2
2;  f3(x) = 2x1

2 – x2;   
  subject to: 

– x1
 – x2 + 11≤ 0 

            0 ≤ x1
 ≤ 16, 

            0 ≤ x2
 ≤ 16, 

            x1, x2  – integer; 
At Step 1. The points f*1, f*2,  f*3; are: f*1 = (91, 329,125), 

x1* = (8,3). f*2 = (247,101,-1), x2*=(2,9), f*3 = (768,256,-16), 
x3* = (0,16).  

At Step 2. The rounded Tchebycheff center xch = (10,10). 
The following initial population is created: x(1) = (5,12), x(2) = 
(8,12), x(3) = (11,12), x(4) = (14,12), x(5) = (7,10), x(6) = (10,10), 
x(7) = (13,10), x(8) = (5,8), x(9) = (8,8), x(10) = (11,8), x(11) = 
(14,8); 

At Step 3. The DM specifies the reference point fr = (100, 
150, 45). 

At Step 4. The worst point in the population is x(4) = 
(14,12), f(4)  = (628,1124,380) with Euclidean distance 
measure d4=1157.4476. The weight center c = (9.2, 9.8). The 
direction for moving the whole population is y = (-4.8, -2.2). 
The obtained new population is: x(1) = (1,10), x(2) = (3,10), x(3) 
= (6,10), x(4) = (9,10), x(5) = (3,8), x(6) = (5,8), x(7) = (8,8), x(8) = 
(4,7), x(9) = (5,6), x(10) = (6,6), x(11) = (9,6); The worst point in 
this  population  is   x(4)  =  (9,10),   f(4)   =  (381,505,152)  with 
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Euclidean distance measure d4=465.2258. The weight center c 
= (5, 7.9). The direction for moving the whole population is y 
= (-4, -2.1). The obtained new population is: x(1) = (1,10), x(2) 
= (2,9), x(3) = (3,8), x(4) = (5,8), x(5) = (4,7), x(6) = (5,6), x(7) = 
(6,5); 

At Step 5. The DM specifies as most acceptable the 
solution x(7) = (6,5) with f(5)  = (111,205,67); The most non 
acceptable point is x(1) = (1,10) with f(1)  = (301,105,-8); The 
improvement direction between them is y = (5, -5). The new 
proposed reference point is fr = (100, 500, 200) with 
corresponding solution x = (10,0),. The weight center cd = 
(5,6). The weight center c = (2.75, 8.75). The direction for 
moving the whole population is y = (2.25, -2.75). The 
parameter α =1. The obtained new population is: x(1) = (3,8), 
x(2) = (4,7), x(3) = (5,6), x(4) = (7,6), x(5) = (6,5), x(6) = (7,4), x(7) 
= (8,3); During the repeated step in the same direction also the 
non-dominated solutions x(8) = (9,2), x(9) = (10,1) have been 
generated. 

At Step 7. The obtained non-dominated solutions are: x(1) = 
(1,10), x(2) = (2,9), x(3) = (3,8), x(4) = (4,7), x(5) = (5,6), x(6) = 
(6,5), x(7) = (7,4), x(8) = (8,3), x(9) = (9,2), x(10) = (10,1); 

At Step 8. the DM does not want to perform a genetic 
search procedure. 

At Step 9. the DM refuses to enter a last  reference point fr. 
At Step 10. and Step 11. don’t have been generated any  

better points.  
At Step 12. the DM chooses the solution x(7) = (7,4) with f(7)  

= (97,261,94) as the best compromise solution. 
In case DM wishes, she/he can start the algorithm 

specifying another reference point. In this way DM could 
explore different parts of Pareto-optimal front. 

V. CONCLUSION 

The proposed MOCIP-algorithm has the following basic 
characteristics: 

• It is designed to find a preferred set of solutions 
instead of the entire Pareto-optimal set. 

• It can quickly converge to the desired part of 
Pareto-optimal front. 

• It is indifferent to the shape of Pareto-optimal 
front. 

• It is applicable to problems with large number of 
objectives and large number of variables. 

• It does not put great demands to the DM. 
• It is an interactive evolutionary method and could 

generate a number of solutions in the region of 
interest, so that the DM would be able to find 
without great efforts the satisfactory non-
dominated solution among them. 
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