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Abstract – Decision diagrams (DDs) are a data structure that 
allows compact representation of discrete functions. During DD 
construction of a decision diagram many Boolean operations 
over DD nodes are performed and many temporary nodes are 
created. To avoid repeating the same operation many times and 
creating identical nodes, the performed operation are stored in a 
compute table while all created nodes are stored in a unique node 
table. Because of that, DD construction is very memory intensive 
and reduction of the memory space used in DD construction is an 
often considered problem. 

We address this problem for the case when the functions to be 
represented by decision diagrams are specified in the PLA 
format. We propose a method for the construction of decision 
diagrams that performs recursively a partitioning of the input 
cube set. The efficiency of the proposed method is verified 
experimentally by a comparison with the classical Cube-by Cube 
algorithm and a recently proposed algorithm with non-recursive 
partitioning. Improvements in the memory management 
achieved by the algorithm proposed in this paper are on the 
average 32% to 35% compared to the classical algorithm and 
18% in the case of the algorithm with non-recursive partitioning. 
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I. INTRODUCTION 

Decision diagrams (DDs) are a data structure used for 
compact representation of discrete functions. Due to their 
important applications in many areas of VLSI CAD, decision 
diagrams and programming packages for their construction 
and manipulation are nowadays a standard part of many 
related CAD systems. 

Irrespective of the implementation details of a package 
used, during the construction of decision diagrams, many 
Boolean operations over DD nodes are performed with many 
of identical operations repeatedly performed. To avoid such 
situations, the basic principles for programming of DDs 
(defined in [1-2]) suggest using: 

1. The unique node table (a hash table that contains all of 
the created nodes, which prevents creation of identical 
nodes many times), and 

2. The compute table (a hash table that contains 
arguments and results of performed operations that 
prevents the performance of the same operation many 
times). 

A consequence in practice is that a node table contains 
many more nodes than it is necessary to represent the function 
given. The compute table usually increases faster than the 
node table. Therefore, it may happen that for some functions it 

is impossible to generate a decision diagram within the 
allocated resources, although the size of the final DD is much 
smaller than the available memory space. Therefore, 
decreasing the number of temporary nodes and the number of 
performed operations in DD constructing is a very important 
task and has been considered in a number of publications; see, 
for instance, [3-9] and references therein. 

In this paper, we present an improved method for 
construction of DD of a Boolean function that is given by in 
the PLA format, i.e., by cubes. In [9] it is presented an 
algorithm for DD construction with partitioning the input cube 
set. The method presented in this paper, also perform the 
partitioning, however, the partitioning strategy is different and 
consists in a recursive implementation of the partitioning 
procedure in many levels. Experimental results show that the 
presented method reduces the number of created nodes by 
32.85% compared to the classical “Cube by cube” algorithm 
for DD construction from cubes, and for 18.51% compared to 
the algorithm with non-recursive partitioning the input cube 
set. The proposed algorithm reduces also the compute table 
for at about 35.9% and 17.96% for the discussed algorithms, 
respectively. 

The paper is organized in the following way. Section 2 
reviews two widely used representations of discrete functions: 
decision diagrams and the PLA format. In Section 3 we 
briefly discuss two methods for the construction of decision 
diagrams for functions specified by cubes: the classical “Cube 
by cube” method and a method with partitioning the input 
cube set presented in [9]. Section 5 proposes an improvement 
of the construction procedure by partitioning the input cube 
set in many levels named as the “Bisection method”. Section 6 
presents a set of experiments that compares the number of 
created nodes and the number of performed operations during 
DD construction in three algorithms discussed in this paper. 
Section 7 summarizes main features of the proposed method 
and presents the related conclusions about its efficiency and 
applicability. 

II. REPRESENTATION OF SWITCHING FUNCTIONS 
BY CUBES AND BY DECISION DIAGRAMS 

There are many ways to specify switching functions, as for 
example, truth-tables or truth-vectors, various functional 
expressions, as well as reduced representations such as cubes 
or decision diagrams.  

A cube specifies the input assignment where a function 
takes the same value (1 or 0 or is unspecified). Thus, for an n-
variable function, the cube is an n-bit string with entries in 
{0,1,-}, where 0 stands for the negated (complemented) input, 
1 corresponds to the uncomplemented input, and “–“ means 
the input is unspecified, i.e., can be either 0 or 1.  
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Berkeley PLA (Espresso) format that is used to specify 
two-level logic circuits, is widely exploited in many 
minimization and optimization algorithms as well as synthesis 
tools. A PLA specification consists of cubes for input 
assignments (the input part) and shows the corresponding 
output values in the output part.  
Example 1. Ful PLA specification of one Boolean function is: 

.i 4 

.o 1 

.c 4 
1101 1 
-110 1 
-001 1 
0-10 1 
.e 

.i, .o, and .c are the number of inputs, outputs, and cubes, 
respectively. The symbol .e denotes the end of the file.  

Binary decision diagrams (BDDs) [2] are another form of 
reduced representations of two-level logic. A BDD is a 
graphical representation of the logic function f that is derived 
by the recursive application of the Shannon decomposition. 
Definition 1. Shannon decomposition 
Let f be a Boolean function and xk be a variable in f. Then  
 0 1 

k kx xf x f x f= == +  
where  0 1   

k kx xf and f= =  are cofactors of the functions f  for xk 
= 0 and xk =1, respectively. 

Formally, a BDD can be viewed as a directed acyclic graph 
G=(N,V,E) consisting of the set of non-terminal nodes (N), 
and terminal or constant nodes (leafs) (V) connected by edges 
(E). Non-terminal nodes are labeled by variables xi in 
f(x1,…,xn), called the decision variables. Nodes to which the 
same variable is assigned form a level in the BDD. Among 
non-terminal nodes there is the root node representing the 
function f, while other non-terminal nodes represent 
subfunctions in f for different assignments of values to the 
subset of variables in f. Each non-terminal node (except the 
root node) has one or more input edges and two outgoing 
edges pointing to the cofactors of f for the corresponding 
assignments of input variables at the upper levels. The 
outgoing edges are labeled by the logic values of 0 and 1, 
which a decision variable can take. 
Example 2. BDD of the function f that is specified by the 
PLA format in Example 1 is shown in the Fig. 1. 

III. EXISTING ALGORITHMS FOR DD 
CONSTRUCTION FROM CUBES 

The classical algorithm for DD construction is: 
Algorithm 1. “Cube by cube” for DD construction 
Given a function f by the cube set { }1 2, , , mS c c c= K . 

Step 1. For the first cube c1 in S construct the DD (called 
masterDD). 

Step 2. For other cubes ci ( [ ]2,i m∈ ) in S do  

Step 2.1. Construct the DD representing the cube ci and 
denote it as the temporaryDD.  

Step 2.2. Add the temporaryDD to the masterDD 
representing all previously processed cubes by 
performing the operation OR  (masterDD = 
masterDD <OR> temporaryDD). 

As it is discussed above, and as it can be seen from the 
Algorithm 1, many operations are performed over the DD 
nodes during DD construction. It follows that the number of 
intermediately created nodes often exceeds considerably the 
number of nodes in the final DD. The following example 
illustrates disproportion between the number of nodes in the 
node table and the number of nodes in the current masterDD 
as a function of the number of processed cubes. 
Example 3. The diagram in Figure 2 shows the increase in 
the total number of created nodes (NN) and the number of 
nodes in the masterDD (size) as a function of the number of 
processed cubes in the constructing the decision diagram for 
the 25-variable benchmark function Apex2. 

In [9], it is proposed a method to reduce the number of 
nodes that are generated during DD construction by 
partitioning the input cube set. 
Algorithm 2. DD construction by partitioning the input cube 
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Fig. 2. The size of DD and the total number of created nodes (NN) in 
the generation of the decision diagram for Apex2. 

 
Fig. 1. BDD of the function from Example 1. 

312



set 
Given a function f by the cube set { }1 2, , , mS c c c= K .  
Partition S into partitions with size w. 

Step 1. Construct the DD for the function that is defined by 
the first partition of the cubes by using the "Cube 
by cube" algorithm and name it masterDD. 

Step 2. For each other partition jp  ( 2,j k∈⎡ ⎤⎣ ⎦ , k=m/w): 

Step 3.1. Construct the DD for the function defined by the 
partition jp  by using the "Cube by cube" 
algorithm. Denote this DD as temporaryDD. 

Step 3.2. Add temporaryDD, created in the step 3.1, to 
the masterDD (i.e., perform the operation OR 
over masterDD and temporaryDD). 

Experimentally it is determined that the optimal value for 
partitions size is w m= , where m is the number of cubes.   

IV. “BISECTION METHOD” FOR DD CONSTRUCTION  

In this paper, we propose a modification of the algorithm for DD 
construction by partitioning the input cube set. The modification 
consists in a recursive application of the partitioning procedure and 
we used different size of subpartitions compared to the previous 
algorithm. In the proposed algorithm, the input cube is first split 
into two partitions of the equal size and then each subsequent 
subpartion is recursively partitioned in the same way until 
partitions of the size 2 are achieved. Formally, this algorithm can 
be described as: 
Algorithm 3. “Bisection method” for DD construction 
Given a function f by the cube set { }1 2, , , mS c c c= K . 
If m>2: 

Step 1a. Partition S into partitions with size m/2. 
Step 2a. Construct the DD for the function that is defined by 

the first partition of cubes form S by using 
“bisection method”. Denote this DD as lowDD. 

Step 3a. Construct the DD for the function that is defined by 
the second partition of cubes form S by using 
“bisection method”. Denote this DD as highDD. 

Step 4a. Create result DD by merging lowDD and highDD 
(masterDD = lowDD <OR> highDD). 

else: 
Step 1b. Create DD by using “Cube by cube” method. 

The following example compares the proposed “Bisection 
method” for DD construction with existing methods that are 
presented in the previous section.  

Example 4. Figure 3 shows the number of created nodes in  
construction of the DD for the benchmark function Apex2 
when the DD is generated by the “Cube by cube” algorithm, 
the algorithm with non-recursive partitioning and by the 
“Bisection method”. 

 
 

V. EXPERIMENTAL RESULTS 

The proposed method is applied for the construction of DDs 
of some MCNC benchmark functions. Table I compares 
number of created nodes when the “Cube by cube” algorithm, 
the algorithm with non-recursive partitioning the input cube 
set and the “Bisection method” are used. In this table, the 
following labels are used: 
− size – the number of the nodes in the final DD, 
− N1 – the number of created nodes in the “Cube by 

cube” algorithm, 
− N2 – the number of created nodes in the algorithm with 

non-recursive partitioning  
− N3 – the number of created nodes in the “Bisection 

algorithm” 
− ∆N3-1 – the reduction ratio of the number of created 

nodes in the “Bisection algorithm” and the “Cube by 

cube” algorithm  ( 1 3
3 1

1
100%

N N
N

N−
−

Δ = ⋅ ). 

− ∆N3-2 – the reduction ratio of the number of created 
nodes in the “Bisection algorithm” and the algorithm 
with non-recursive partitioning  

( 2 3
3 2

2
100%

N N
N

N−
−

Δ = ⋅ ). 

To compare the total memory space that is used in 
executing each of the discussed algorithms, we also analyze 
the number of executed Boolean operations during the DDs 
constructions, i.e., the number of elements that are stored in 
the compute table. The results of these comparisons are shown 
in Table II. The meaning of labels is the same as in Table I, 
with the letter N for the number of nodes replaced by C for the 
number of computations. As it can be seen from these tables, 
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Fig. 3 The number of created nodes during generating the DD of the 
function Apex2 by different algorithms as a function of the number 

of processed nodes. 
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the proposed “Bisection method” reduces the memory space 
needed for storing both the created DD nodes, and the 
performed computations. These two reduction ratios are 
approximately the same. 

VI. CONCLUSION 

The method for DD construction presented in this paper is 
based on the partitioning the input cube set recursively in 
multiple levels. The efficiency of the method is estimated 
experimentally over a set of MCNC benchmark functions. 
Experiments show that the presented method reduces memory 
space for two critical data structures in DD generation: the 
node table and the compute table. 

As this approach does not require operations out of the set 
of standard operations usually implemented in decision 
diagram based packages, it can be used within the existing 
packages. 
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TABLE II 
NUMBERS OF EXECUTED OPERATIONS WHEN DDS 

ARE CREATED BY DIFFERENT ALGORITHMS 

Function C1 C2 C3 ∆C3-1 ∆C3-2 
Alu4 30519 22350 17307 43,29 22,56 

Apex2 647673 269503 166933 74,23 38,06 
Apex1 1193198 224928 75843 93,64 66,28 
Apex4 10814 10008 9350 13,54 6,57 
Apex5 16582 15602 12193 26,47 21,85 
B12 284 278 252 11,27 9,35 
Bw 463 339 293 36,72 13,57 

Duke2 3227 2637 2171 32,72 17,67 
Ex1010 8563 8403 7649 10,67 8,97 

Ex5 5609 3132 2347 58,16 25,06 
In4 11143 9527 8894 20,18 6,64 

Misex3 37733 32006 25598 32,16 20,02 
Misex3c 12842 9091 7631 40,58 16,06 

Pdc 3986 3152 2854 28,40 9,45 
Spla 4412 3991 3785 14,21 5,16 

Table3 3842 2818 2590 32,59 8,09 
Vg2 6207 4038 3633 41,47 10,03 

Average    35,9 17,96 

 

TABLE I 
NUMBERS OF CREATED NODES WHEN DDS ARE 

CREATED BY DIFFERENT ALGORITHMS 

Function size N1 N2 N3 ∆N3-1 ∆N3-2 
Alu4 1352 18036 16125 14589 19,11 9,53 

Apex2 7102 372349 140671 78457 78,93 44,23 
Apex1 28414 1147705 193739 56074 95,11 71,05 
Apex4 1021 11308 10474 9755 13,73 6,86 
Apex5 2705 16888 16165 13293 21,29 17,77 
B12 91 316 312 273 13,61 12,5 
Bw 118 460 340 293 36,30 13,82 

Duke2 976 3262 2710 2283 30,01 15,76 
Ex1010 1079 10357 10197 9446 8,80 7,36 

Ex5 311 4841 2572 1882 61,12 26,83 
In4 1109 8033 7004 6778 15,62 3,23 

Misex3 1301 25504 25604 21003 17,65 17,97 
Misex3c 810 8277 6002 5122 38,12 14,66 

Pdc 696 3923 3157 2881 26,56 8,74 
Spla 625 5454 5009 4734 13,20 5,49 

Table3 941 4386 4147 3166 27,82 23,66 
Vg2 1059 4923 3391 2878 41,54 15,13 

Average     32,85 18,51 
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