

Bisection Method for DD Construction
Suzana Stojković, Radomir S. Stanković, Dragan Janković1

Abstract – Decision diagrams (DDs) are a data structure that
allows compact representation of discrete functions. During DD
construction of a decision diagram many Boolean operations
over DD nodes are performed and many temporary nodes are
created. To avoid repeating the same operation many times and
creating identical nodes, the performed operation are stored in a
compute table while all created nodes are stored in a unique node
table. Because of that, DD construction is very memory intensive
and reduction of the memory space used in DD construction is an
often considered problem.

We address this problem for the case when the functions to be
represented by decision diagrams are specified in the PLA
format. We propose a method for the construction of decision
diagrams that performs recursively a partitioning of the input
cube set. The efficiency of the proposed method is verified
experimentally by a comparison with the classical Cube-by Cube
algorithm and a recently proposed algorithm with non-recursive
partitioning. Improvements in the memory management
achieved by the algorithm proposed in this paper are on the
average 32% to 35% compared to the classical algorithm and
18% in the case of the algorithm with non-recursive partitioning.

Keywords – decision diagrams, decision diagram construction,

bisection method, Boolean functions representations

I. INTRODUCTION

Decision diagrams (DDs) are a data structure used for
compact representation of discrete functions. Due to their
important applications in many areas of VLSI CAD, decision
diagrams and programming packages for their construction
and manipulation are nowadays a standard part of many
related CAD systems.

Irrespective of the implementation details of a package
used, during the construction of decision diagrams, many
Boolean operations over DD nodes are performed with many
of identical operations repeatedly performed. To avoid such
situations, the basic principles for programming of DDs
(defined in [1-2]) suggest using:

1. The unique node table (a hash table that contains all of
the created nodes, which prevents creation of identical
nodes many times), and

2. The compute table (a hash table that contains
arguments and results of performed operations that
prevents the performance of the same operation many
times).

A consequence in practice is that a node table contains
many more nodes than it is necessary to represent the function
given. The compute table usually increases faster than the
node table. Therefore, it may happen that for some functions it

is impossible to generate a decision diagram within the
allocated resources, although the size of the final DD is much
smaller than the available memory space. Therefore,
decreasing the number of temporary nodes and the number of
performed operations in DD constructing is a very important
task and has been considered in a number of publications; see,
for instance, [3-9] and references therein.

In this paper, we present an improved method for
construction of DD of a Boolean function that is given by in
the PLA format, i.e., by cubes. In [9] it is presented an
algorithm for DD construction with partitioning the input cube
set. The method presented in this paper, also perform the
partitioning, however, the partitioning strategy is different and
consists in a recursive implementation of the partitioning
procedure in many levels. Experimental results show that the
presented method reduces the number of created nodes by
32.85% compared to the classical “Cube by cube” algorithm
for DD construction from cubes, and for 18.51% compared to
the algorithm with non-recursive partitioning the input cube
set. The proposed algorithm reduces also the compute table
for at about 35.9% and 17.96% for the discussed algorithms,
respectively.

The paper is organized in the following way. Section 2
reviews two widely used representations of discrete functions:
decision diagrams and the PLA format. In Section 3 we
briefly discuss two methods for the construction of decision
diagrams for functions specified by cubes: the classical “Cube
by cube” method and a method with partitioning the input
cube set presented in [9]. Section 5 proposes an improvement
of the construction procedure by partitioning the input cube
set in many levels named as the “Bisection method”. Section 6
presents a set of experiments that compares the number of
created nodes and the number of performed operations during
DD construction in three algorithms discussed in this paper.
Section 7 summarizes main features of the proposed method
and presents the related conclusions about its efficiency and
applicability.

II. REPRESENTATION OF SWITCHING FUNCTIONS
BY CUBES AND BY DECISION DIAGRAMS

There are many ways to specify switching functions, as for
example, truth-tables or truth-vectors, various functional
expressions, as well as reduced representations such as cubes
or decision diagrams.

A cube specifies the input assignment where a function
takes the same value (1 or 0 or is unspecified). Thus, for an n-
variable function, the cube is an n-bit string with entries in
{0,1,-}, where 0 stands for the negated (complemented) input,
1 corresponds to the uncomplemented input, and “–“ means
the input is unspecified, i.e., can be either 0 or 1.

1Authors are with the Faculty of Electronic Engineering, A.
Medvedeva 10, 18000 Niš, Serbia,

Contact author e-mail: suzana.stojkovic@elfak.ni.ac.rs

311

Berkeley PLA (Espresso) format that is used to specify
two-level logic circuits, is widely exploited in many
minimization and optimization algorithms as well as synthesis
tools. A PLA specification consists of cubes for input
assignments (the input part) and shows the corresponding
output values in the output part.
Example 1. Ful PLA specification of one Boolean function is:

.i 4

.o 1

.c 4
1101 1
-110 1
-001 1
0-10 1
.e

.i, .o, and .c are the number of inputs, outputs, and cubes,
respectively. The symbol .e denotes the end of the file.

Binary decision diagrams (BDDs) [2] are another form of
reduced representations of two-level logic. A BDD is a
graphical representation of the logic function f that is derived
by the recursive application of the Shannon decomposition.
Definition 1. Shannon decomposition
Let f be a Boolean function and xk be a variable in f. Then
 0 1

k kx xf x f x f= == +
where 0 1

k kx xf and f= = are cofactors of the functions f for xk
= 0 and xk =1, respectively.

Formally, a BDD can be viewed as a directed acyclic graph
G=(N,V,E) consisting of the set of non-terminal nodes (N),
and terminal or constant nodes (leafs) (V) connected by edges
(E). Non-terminal nodes are labeled by variables xi in
f(x1,…,xn), called the decision variables. Nodes to which the
same variable is assigned form a level in the BDD. Among
non-terminal nodes there is the root node representing the
function f, while other non-terminal nodes represent
subfunctions in f for different assignments of values to the
subset of variables in f. Each non-terminal node (except the
root node) has one or more input edges and two outgoing
edges pointing to the cofactors of f for the corresponding
assignments of input variables at the upper levels. The
outgoing edges are labeled by the logic values of 0 and 1,
which a decision variable can take.
Example 2. BDD of the function f that is specified by the
PLA format in Example 1 is shown in the Fig. 1.

III. EXISTING ALGORITHMS FOR DD
CONSTRUCTION FROM CUBES

The classical algorithm for DD construction is:
Algorithm 1. “Cube by cube” for DD construction
Given a function f by the cube set { }1 2, , , mS c c c= K .

Step 1. For the first cube c1 in S construct the DD (called
masterDD).

Step 2. For other cubes ci ([]2,i m∈) in S do

Step 2.1. Construct the DD representing the cube ci and
denote it as the temporaryDD.

Step 2.2. Add the temporaryDD to the masterDD
representing all previously processed cubes by
performing the operation OR (masterDD =
masterDD <OR> temporaryDD).

As it is discussed above, and as it can be seen from the
Algorithm 1, many operations are performed over the DD
nodes during DD construction. It follows that the number of
intermediately created nodes often exceeds considerably the
number of nodes in the final DD. The following example
illustrates disproportion between the number of nodes in the
node table and the number of nodes in the current masterDD
as a function of the number of processed cubes.
Example 3. The diagram in Figure 2 shows the increase in
the total number of created nodes (NN) and the number of
nodes in the masterDD (size) as a function of the number of
processed cubes in the constructing the decision diagram for
the 25-variable benchmark function Apex2.

In [9], it is proposed a method to reduce the number of
nodes that are generated during DD construction by
partitioning the input cube set.
Algorithm 2. DD construction by partitioning the input cube

0

50000

100000

150000

200000

250000

300000

350000

400000

128 256 384 512 640 768 896 1024

number of processed cubes

nu
m

be
r o

f n
od

es

NN
size

Fig. 2. The size of DD and the total number of created nodes (NN) in
the generation of the decision diagram for Apex2.

Fig. 1. BDD of the function from Example 1.

312

set
Given a function f by the cube set { }1 2, , , mS c c c= K .
Partition S into partitions with size w.

Step 1. Construct the DD for the function that is defined by
the first partition of the cubes by using the "Cube
by cube" algorithm and name it masterDD.

Step 2. For each other partition jp (2,j k∈⎡ ⎤⎣ ⎦ , k=m/w):

Step 3.1. Construct the DD for the function defined by the
partition jp by using the "Cube by cube"
algorithm. Denote this DD as temporaryDD.

Step 3.2. Add temporaryDD, created in the step 3.1, to
the masterDD (i.e., perform the operation OR
over masterDD and temporaryDD).

Experimentally it is determined that the optimal value for
partitions size is w m= , where m is the number of cubes.

IV. “BISECTION METHOD” FOR DD CONSTRUCTION

In this paper, we propose a modification of the algorithm for DD
construction by partitioning the input cube set. The modification
consists in a recursive application of the partitioning procedure and
we used different size of subpartitions compared to the previous
algorithm. In the proposed algorithm, the input cube is first split
into two partitions of the equal size and then each subsequent
subpartion is recursively partitioned in the same way until
partitions of the size 2 are achieved. Formally, this algorithm can
be described as:
Algorithm 3. “Bisection method” for DD construction
Given a function f by the cube set { }1 2, , , mS c c c= K .
If m>2:

Step 1a. Partition S into partitions with size m/2.
Step 2a. Construct the DD for the function that is defined by

the first partition of cubes form S by using
“bisection method”. Denote this DD as lowDD.

Step 3a. Construct the DD for the function that is defined by
the second partition of cubes form S by using
“bisection method”. Denote this DD as highDD.

Step 4a. Create result DD by merging lowDD and highDD
(masterDD = lowDD <OR> highDD).

else:
Step 1b. Create DD by using “Cube by cube” method.

The following example compares the proposed “Bisection
method” for DD construction with existing methods that are
presented in the previous section.

Example 4. Figure 3 shows the number of created nodes in
construction of the DD for the benchmark function Apex2
when the DD is generated by the “Cube by cube” algorithm,
the algorithm with non-recursive partitioning and by the
“Bisection method”.

V. EXPERIMENTAL RESULTS

The proposed method is applied for the construction of DDs
of some MCNC benchmark functions. Table I compares
number of created nodes when the “Cube by cube” algorithm,
the algorithm with non-recursive partitioning the input cube
set and the “Bisection method” are used. In this table, the
following labels are used:
− size – the number of the nodes in the final DD,
− N1 – the number of created nodes in the “Cube by

cube” algorithm,
− N2 – the number of created nodes in the algorithm with

non-recursive partitioning
− N3 – the number of created nodes in the “Bisection

algorithm”
− ∆N3-1 – the reduction ratio of the number of created

nodes in the “Bisection algorithm” and the “Cube by

cube” algorithm (1 3
3 1

1
100%

N N
N

N−
−

Δ = ⋅).

− ∆N3-2 – the reduction ratio of the number of created
nodes in the “Bisection algorithm” and the algorithm
with non-recursive partitioning

(2 3
3 2

2
100%

N N
N

N−
−

Δ = ⋅).

To compare the total memory space that is used in
executing each of the discussed algorithms, we also analyze
the number of executed Boolean operations during the DDs
constructions, i.e., the number of elements that are stored in
the compute table. The results of these comparisons are shown
in Table II. The meaning of labels is the same as in Table I,
with the letter N for the number of nodes replaced by C for the
number of computations. As it can be seen from these tables,

0

50000

100000

150000

200000

250000

300000

350000

400000

128 256 384 512 640 768 896 1024

number of processed cubes

nu
m

be
r o

f c
re

at
ed

 n
od

es

Cube by cube With partitioninig (w=32)

Bisection methos

Fig. 3 The number of created nodes during generating the DD of the
function Apex2 by different algorithms as a function of the number

of processed nodes.

313

the proposed “Bisection method” reduces the memory space
needed for storing both the created DD nodes, and the
performed computations. These two reduction ratios are
approximately the same.

VI. CONCLUSION

The method for DD construction presented in this paper is
based on the partitioning the input cube set recursively in
multiple levels. The efficiency of the method is estimated
experimentally over a set of MCNC benchmark functions.
Experiments show that the presented method reduces memory
space for two critical data structures in DD generation: the
node table and the compute table.

As this approach does not require operations out of the set
of standard operations usually implemented in decision
diagram based packages, it can be used within the existing
packages.

REFERENCES

[1] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient
implementation of a BDD package” Proc. Design Automation
Conference, pp. 40–45, 1990

[2] R. E. Bryant, “Graph-based algorithms for Boolean function
manipulation”, IEEE Transactions on Computers, Vol. C-35,
No. 8, pp. 677-691, 1986.

[3] B. Yang, Y. -A. Chen, R. E. Bryant and D. R. O'Hallaron,
"Space- and Time-Efficient BDD Construction via Working set
Control", Proc. Asian-South Pacific Design Automation
Conference, pp. 423-432, 1998.

[4] S. Minato, "Streaming BDD Manipulation", IEEE Transactions
on Computers, VOL. 51, pp. 474-485, 2002.

[5] S. Minato and S. Ishihara, "Streaming BDD Manipulation for
Large-Scale Combinatorial Problems", In Proc. of ACM/IEEE
Design, Automation and Test in Europe (DATE-2001), pp. 702-
707, 2001.

[6] H. Ochi, N. Ishiura, S. Yajima, “Breadth-First Manipulation of
SBDD of Boolean Functions for Vector Processing”,
Proceedings of the Design Automation Conference, pp. 413-
416, 1991.

[7] H. Ochi, N. Ishiura, S. Yajima, “Breadth-First Manipulation of
Very Large Binary-Decision Diagrams”, Proceedings of
International Conference on Computer-Aided Design, pp. 413-
416, 1993.

[8] R. K. Ranjan, J. V. Sanghavi, R. K. Brayton, A. Sangiovanni-
Vincentelli, “High Performance BDD Package Based on
Exploiting Memory Hierarchy”, Proceedings of ACM/IEEE
Design Automation Conference, pp. 635-640, 1996.

[9] S. Stojkovic, D. Jankovic, R. S. Stankovic, ”An Improved
Algorithm for the Construction of Decision Diagrams by
Rearranging and Partitioning the Input Cube Set”, accepted for
publication in IEEE Transactions on Computers

TABLE II
NUMBERS OF EXECUTED OPERATIONS WHEN DDS

ARE CREATED BY DIFFERENT ALGORITHMS

Function C1 C2 C3 ∆C3-1 ∆C3-2
Alu4 30519 22350 17307 43,29 22,56

Apex2 647673 269503 166933 74,23 38,06
Apex1 1193198 224928 75843 93,64 66,28
Apex4 10814 10008 9350 13,54 6,57
Apex5 16582 15602 12193 26,47 21,85
B12 284 278 252 11,27 9,35
Bw 463 339 293 36,72 13,57

Duke2 3227 2637 2171 32,72 17,67
Ex1010 8563 8403 7649 10,67 8,97

Ex5 5609 3132 2347 58,16 25,06
In4 11143 9527 8894 20,18 6,64

Misex3 37733 32006 25598 32,16 20,02
Misex3c 12842 9091 7631 40,58 16,06

Pdc 3986 3152 2854 28,40 9,45
Spla 4412 3991 3785 14,21 5,16

Table3 3842 2818 2590 32,59 8,09
Vg2 6207 4038 3633 41,47 10,03

Average 35,9 17,96

TABLE I
NUMBERS OF CREATED NODES WHEN DDS ARE

CREATED BY DIFFERENT ALGORITHMS

Function size N1 N2 N3 ∆N3-1 ∆N3-2
Alu4 1352 18036 16125 14589 19,11 9,53

Apex2 7102 372349 140671 78457 78,93 44,23
Apex1 28414 1147705 193739 56074 95,11 71,05
Apex4 1021 11308 10474 9755 13,73 6,86
Apex5 2705 16888 16165 13293 21,29 17,77
B12 91 316 312 273 13,61 12,5
Bw 118 460 340 293 36,30 13,82

Duke2 976 3262 2710 2283 30,01 15,76
Ex1010 1079 10357 10197 9446 8,80 7,36

Ex5 311 4841 2572 1882 61,12 26,83
In4 1109 8033 7004 6778 15,62 3,23

Misex3 1301 25504 25604 21003 17,65 17,97
Misex3c 810 8277 6002 5122 38,12 14,66

Pdc 696 3923 3157 2881 26,56 8,74
Spla 625 5454 5009 4734 13,20 5,49

Table3 941 4386 4147 3166 27,82 23,66
Vg2 1059 4923 3391 2878 41,54 15,13

Average 32,85 18,51

314

