

Software Tool for Random-Based Generation of
Switching Function Benchmarks

Miloš M. Radmanović1

Abstract – Traditional approach to the measurement of
performance for CAD algorithms involve the use of sets of so-
called “benchmark functions”. This paper describes a system
(software tool), that generates and manipulates random
constraint two-level representation of a Boolean function
corresponding to the so called “real-world” functions. The
software tool satisfies both the requirements to build some
common benchmarks useful to compare different research
results, and to create a tool for supporting intensive test of new
algorithms. The paper gives an overview of the functionalities of
the software tool and describes parameters that characterize the
layout of a function. Tool is made publicity available in an
attempt to extend standard sets of benchmark functions.

Keywords – Synthetic random benchmark generator, switching
functions, Berkeley PLA format, software tool.

I. INTRODUCTION

Benchmark functions design is the basis for the
performance evaluation of today’s CAD algorithms. The most
commonly method to verify the competitiveness of a new
algorithm consists of applying this algorithm to a set of
benchmark functions design in a given experimental settings.
The experimental results are then compared to those obtained
by applying a comparable algorithm to the same set of
benchmarks design. This implies that the quality of CAD
algorithm’s evaluation is only as good as the functions design
is used for benchmarking.

In recent years, there have been several initiatives for
assembling benchmark design suits consisting of two-level
representation of Boolean functions to improve the quality of
CAD algorithms. An extensive research on benchmarks was
conducted in both academia and industry. Industry use real
customer designs as benchmarks to demonstrate performance
of their products over their competition. However, customer
designs are usually confidential and provided under non-
disclosure agreements. Most of the benchmarks in academia
originate from conferences and workshops. For instance
MCNC.91 [5] and IWLS.05 [6] were published for workshops
on Logic Synthesis. The MCNC.91 benchmark suite has
standardized libraries with representative circuit designs
ranging from simple circuits to advanced circuits obtained
from industry. MCNC benchmarks are very popular in
academic research. The IWLS.05 contains diverse circuit
designs derived from past conference benchmarks, open

source community of hardware designers, and industry to
represent a variety of applications. The benchmarks were
synthesized and organized into a standardized library with a
common timing infrastructure, standard interfaces and
reporting formats to promote easy exchange of benchmarks
and experimental results in the community. Conference
benchmarks are widely circulated because they are freely
available in public domains. Open source communities allow
members to share benchmarks, methodologies, and results.
For instance OpenCores [7] is an open source community that
deals with semiconductor intellectual property cores.
Academia and industrial corporations use freely available
OpenCores designs to benchmark their products.

In some cases, benchmark designers turn to automatic
generation of synthetic benchmarks to evaluate new
architectures which they can’t efficiently test using existing
benchmarks [10]. The paper [8] presents an approach to
generate synthetic benchmarks for evaluating new
architectures and tools, which don’t have representative
evaluation benchmark sets. For instance, the paper [9]
implemented an algorithm for generating synthetic
benchmarks and used them to study optimality and scalability
of placer tools.

The problem of a correct experimental evaluation is crucial
in several areas of Logic synthesis, in particular when a
computationally intensive test of specific algorithms is
needed. This paper describes a software tool (synthetic
benchmark generator), that generates and manipulates random
constraint two-level representation of a Boolean function
corresponding to the so called “real-world” functions. My
attention to the problem generates from previous work on the
evaluation of the specialized algorithms for calculation over
decision diagrams [1], [2]. This previous work has shown that
evaluation of some algorithms needs for reliable benchmarks,
like a library of similar problems having different
characteristics. In particular, I address the problem of defining
a set of random-based two-level representation of a Boolean
function according to a number of well designed parameters
and their management by a software tool. Software tool
generates files in widely used Berkeley PLA (Espresso)
format [13] for two-level representation of Boolean function.
Tool is made publicity available [15] in an attempt to extend
standardized libraries of benchmark functions.

 There are many different approaches to generate random-
based benchmarks [3], [4], [8], [11], [12]. When in need of
random-based two-level representation of a Boolean function
benchmarks some approach can be followed. The first
approach consists of random generation of two-level
representation of a Boolean function with the probability of
appearance for each element of the representation. The second
approach consists of random appearance of the basic logic

1Miloš M. Radmanović is with the Faculty of Electronic
Engineering, Aleksandra Medvedeva 14, 18000 Niš, Serbia, E-mail:
milos.radmanovic@gmail.com

333

operation sequences and the third approach consists of
random appearance of the arithmetic logic unit operation
sequences.

This paper is organized as follows: Section 2 shortly
introduces the Berkeley PLA (Espresso) format for two-level
representation of Boolean function; Section 3 presents the
technical details of the random-based benchmarks generator
proposed in this paper; Section 4 describes the software tool
capabilities to offer an experimental workbench and gives
some examples of using generated benchmarks. Some
concluding remarks end the paper.

II. BERKLEY PLA FORMAT

The Berkley PLA (Espresso) format is a logical
representation of a set of Boolean equation. The format has
been expanded to allow for multiple-valued logic functions,
and to allow for the specification of the don’t-care set.
Programs exist to translate a set of equations into this format
(e.g., eqntott, bdsyn, eqntopla). PLA format is described as a
character matrix with keywords embedded in the file to
specify the size of the matrix and the logical format of the
function.

The minimum required set of keywords is: .i (specifies the
number of input variables) and .o (specifies the number of
output variables) for binary-valued functions, or .mv for
multiple-valued functions. A complete list of the keywords is
given in [13].

The default PLA file formats are compatible with the
Berkeley standard format for the physical description of a
PLA (Programmable logic array). It is generally assumed that
the PLA format is specified such that each row of the PLA fits
on a single line in the file. A term is represented by a "cube"
which can be considered either a compact representation of an
algebraic product term which implies the function value is a 1,
or as a representation of a row in a PLA which implements the
term. A cube has an input part which corresponds to the input
plane of a PLA, and an output part which corresponds to the
output plane of a PLA. Each position in the input plane
corresponds to an input variable where a ‘0’ implies the
corresponding input literal appears complemented in the
product term, a ‘1’ implies the input literal appears
uncomplemented in the product term, and ‘-‘ implies the input
literal does not appear in the product term. For each output, a
literal ‘1’ means that this product term belongs to the ON-set,
a ‘0’ means that this product term belongs to the OFF-set, a
‘−’ means that this product term belongs to the DC-set, and a
‘˜’ implies this product term has no meaning for the value of
this function. The ON-set of a Boolean function is defined as
the set of minterms for which function value is a 1. The OFF-
set of a Boolean function is defined as the set of minterms for
which function value is a 0. The DC-set (don’t care set) is
defined as the set of minterms for which the function value is
unspecified. A function is completely described by providing
its ON-set, OFF-set and DC-set. A complete description of
PLA format is given in [13].

The Berkley PLA format representation is illustrated
in Figure 1 by a two-input adder.

III. SOFTWARE TOOL

In this section I described the basic ideas followed to
generate random two-level representation of Boolean function
based on Berkley PLA format. The procedures build two-level
representation by using a set of parameters to control the
structure of the cubes.

The first generation algorithms controls nine two-level
representation’s characteristics: (1) number of input variables,
(2) number of output variables, (3) number of cubes, (4)
probability of appearance for input literal ‘0’, (5) probability
of appearance for input literal ‘1’, (6) probability of
appearance for input literal ‘-’, (7) probability of appearance
for output literal ‘0’, (5) probability of appearance for output
literal ‘1’, (6) probability of appearance for output literal ‘~’. I
believe that changing these characteristics it is possible to
generate a significantly representative subset of similar two-
level representation having different characteristics. The
proposed generation algorithm is able to generate either a
large benchmark sets with several levels of difficulty to test
average performance of a reasoning algorithm or to create a
particular instance to test such an algorithm in extreme
situations.

The basic idea is to randomly map set of input literal ‘0’ on
set of input part of cube. The random mapping is controlled
by literal ‘0’ density (probability of appearance). The other
aspects to control random mapping are input literal ‘1’, input
literal ‘-‘, output literal ‘0’, output literal ‘1’ and output literal
‘~’ density.

The actual generating algorithm can produce only synthetic
benchmark functions not corresponding to the so called “real-
world” functions. I am now modifying it for producing also
benchmark functions corresponding to the “real-world”
functions.

The second and the third generation algorithms controls six
two-level representation’s characteristics: (1) number of input
variables, (2) number of output variables, (3) number of
cubes, (4) probability of appearance for input literal ‘0’, (5)
probability of appearance for input literal ‘1’, (6) layout of
output ON-set and OFF-set.

The second generation algorithm proceeds similarly to the
first generation algorithm with two notable differences. First, I
don’t use random mapping of input literal ‘-‘. Second, ON-set
and OFF-set of a Boolean function is defined as a basic logic

.i 4

.o 3

.p 11
100- 010
0101 010
001- 010
1-00 010
0-10 010
1111 010
-111 100
11-1 100
-1-0 001
-0-1 001
1-1- 100
.e

Fig. 1. Example of Berkley PLA format

334

operation (AND, OR, NOT, NAND, NOR, EXOR and
EXNOR) sequence.

In order to guarantee the “real-world” benchmark functions,
the third generation algorithm extends the second generation
algorithms by defining ON-set and OFF-set as a arithmetic-
logical operation (adder, multiplier) sequence.

To exploit the capabilities of generating random two-level
representation of Boolean function, I have inserted it in a
software tool (synthetic benchmark generator) that allows a
flexible interaction between a user and generation algorithms.

Software tool is written in MS Visual C++ and use MFC
technology [14]. It consists of two basic modules: (1) Random
two-level representation generator and (2) Interaction module
that allow user to interact with two-level representation in
Berkley PLA format and to control representation’s
characteristics as previously described. It is to be noted
constant possibility of naming and saving a current generated
function, of choosing particular generating algorithm to be
used and of additional editing a two-level representation in
PLA format.

IV. USING THE GENERATED BENCHMARKS

Binary Decision Diagrams (BDDs) are data structures
convenient for representation of discrete functions. BDDs are
derived by the reduction of the corresponding binary decision
trees (BDTs). The reduction is performed by sharing the
isomorphic subtrees and deleting the redundant information in
the BDT using the suitably defined reduction rules. BDDs are
often substantially more compact than traditional normal
forms such as conjunctive normal form and disjunctive
normal form. They can also be manipulated very efficiently.
Hence, BDDs have become widely used for a variety of CAD
applications, including symbolic simulation, verification of
combinational logic and verification of sequential circuits.

Multiple-output switching functions are represented by
shared BDDs (SBDDs) [16] having a separate root node for
each output. Thus, SBDDs are obtained by sharing isomorphic
subtrees in BDDs for outputs of function, considered as
separate particular switching functions.

I now show examples of ability of creating subset of similar
two-level representation having different characteristics.
Below I give tables of different time and space SBDD testing
statistics with similar generated two-level representations of
Boolean functions. I performed the testing on a PC Pentium
IV on 2,66 GHz with 4 GB of RAM (MS Windows 7
Ultimate). The memory usage for all tests was limited to 2
GB.

It is now possible to show the effectiveness of the work
perform by the generation algorithms.

Table 1 describes SBDD time and space statistics using
generated benchmark based on the first algorithm controlled
by changing the number of inputs and the density of input
literal ‘0’. In most cases it is shown that low density of input
literal ‘0’ in two level representation of Boolean function
produce more SBDD nodes. Differences in performances
between functions with different number of inputs can be
evaluated from generated benchmarks. Several classes of
functions can be compared under control of some parameters.

Table 2 describes SBDD time and space statistics using
generated benchmark based on the first algorithm controlled
by changing the number of inputs and the density of output
literal ‘1’. In most cases it is shown that medium density of
output literal ‘1’ in two level representation of Boolean
function produce more SBDD nodes. Also, it is shown that
extremely low and high density of literal ‘1’ increase the size
of SBDD.

Table 3 describes SBDD time and space statistics using
generated benchmark based on the third algorithm controlled
by changing number of inputs, outputs and cubes. In most
cases it is shown that large number of cubes produces more
SBDD nodes.

I encountered a number of factors that requires repetitions
of experiments. The major factor is non trivial, unexpected
and often unexplainable variability of results under slightly
different parameters condition.

I just report the fact that first experimentation I am
performing is quite satisfactory. It opens the possibility to
create a number of random benchmarks with similar
parameters and all different on random basis.

TABLE I
SBDD TIME AND SPACE STATISTIC USING

GENERATED BENCHMARKS BASED ON FIRST
ALGORITHM (DENSITY OF INPUT LITERAL ‘0’)

Function
name

inputs/outputs/cubes
/density of inp. literal ‘0’

time
[s] nodes

rnd0_01 75/100/150/5 53.24 1635332
rnd0_02 75/100/150/15 2.94 183136
rnd0_03 75/100/150/25 1.11 71960
rnd0_04 75/100/150/35 0.68 39766
rnd0_05 75/100/150/45 0.54 37683
rnd0_06 75/100/150/55 0.5 32185
rnd0_07 75/100/150/65 0.42 26346
rnd0_08 75/100/150/75 0.4 26755
rnd0_09 75/100/150/85 0.53 28517
rnd0_10 75/100/150/95 0.61 24397
rnd0_11 100/100/150/5 104.02 2352778
rnd0_12 100/100/150/15 3.66 214117
rnd0_13 100/100/150/25 1.24 73326
rnd0_14 100/100/150/35 0.74 46874
rnd0_15 100/100/150/45 0.48 33324
rnd0_16 100/100/150/55 0.46 30385
rnd0_17 100/100/150/65 0.48 32200
rnd0_18 100/100/150/75 0.46 32505
rnd0_19 100/100/150/85 0.56 31984
rnd0_20 100/100/150/95 0.98 38543
rnd0_21 150/100/150/5 54.05 1785260
rnd0_22 150/100/150/15 3.08 181595
rnd0_23 150/100/150/25 1.32 76929
rnd0_24 150/100/150/35 0.67 44976
rnd0_25 150/100/150/45 0.65 43895
rnd0_26 150/100/150/55 0.49 37768
rnd0_27 150/100/150/65 0.64 41911
rnd0_28 150/100/150/75 0.54 38098
rnd0_30 150/100/150/85 0.62 42794
rnd0_31 150/100/150/95 1.35 62956

335

TABLE II
SBDD TIME AND SPACE STATISTIC USING

GENERATED BENCHMARKS BASED ON FIRST
ALGORITHM (DENSITY OF OUTPUT LITERAL “1”)

Function
name

inputs/outputs/cubes
/density of inp. literal ‘0’

time
[s] nodes

rnd1_01 75/100/150/5 0.09 11282
rnd1_02 75/100/150/15 0.25 22808
rnd1_03 75/100/150/25 0.53 39326
rnd1_04 75/100/150/35 0.89 49733
rnd1_05 75/100/150/45 0.96 56972
rnd1_06 75/100/150/55 1.34 57661
rnd1_07 75/100/150/65 0.95 43908
rnd1_08 75/100/150/75 1.51 59644
rnd1_09 75/100/150/85 1.17 50242
rnd1_10 75/100/150/95 0.62 28826
rnd1_11 100/100/150/5 0.11 13891
rnd1_12 100/100/150/15 0.28 26655
rnd1_13 100/100/150/25 0.53 41679
rnd1_14 100/100/150/35 0.68 44775
rnd1_15 100/100/150/45 1.03 57787
rnd1_16 100/100/150/55 0.91 51122
rnd1_17 100/100/150/65 1.26 57370
rnd1_18 100/100/150/75 1.41 59082
rnd1_19 100/100/150/85 0.96 40281
rnd1_20 100/100/150/95 0.48 23023
rnd1_21 150/100/150/5 0.14 18338
rnd1_22 150/100/150/15 0.31 32156
rnd1_23 150/100/150/25 0.51 44581
rnd1_24 150/100/150/35 0.84 58650
rnd1_25 150/100/150/45 0.84 56385
rnd1_26 150/100/150/55 1.21 67633
rnd1_27 150/100/150/65 1.32 62448
rnd1_28 150/100/150/75 1.23 55816
rnd1_30 150/100/150/85 1.38 57329
rnd1_31 150/100/150/95 0.62 34542

TABLE III
SBDD TIME AND SPACE STATISTIC USING

GENERATED BENCHMARKS BASED ON THIRD
ALGORITHM

Function name inputs/outputs/cubes time [s] nodes
rnd_mul32_01 64/64/250 0.29 17675
rnd_mul32_02 64/64/500 0.81 34727
rnd_mul32_03 64/64/750 1.59 50998
rnd_mul32_04 64/64/1000 2.74 67391
rnd_mul48_01 96/96/250 0.43 27642
rnd_mul48_02 96/96/500 1.27 54327
rnd_mul48_03 96/96/750 2.59 80574
rnd_mul48_04 96/96/1000 4.38 106761
rnd_mul60_01 120/120/250 0.57 35098
rnd_mul60_02 120/120/500 1.63 69059
rnd_mul60_03 120/120/750 3.35 102815
rnd_mul60_04 120/120/1000 5.85 135944

.

V. CONCLUSION

This paper describes a software tool that generates and
manipulates random constraint two-level representation of a
Boolean function in Berkley PLA format corresponding to
“real-world” functions. The tool includes three approaches to
build random two-level representation by using a set of
parameters to control the structure of the cubes.

The tool satisfies both the requirements to build some
common benchmarks useful to compare different research
results, and to create a tool for supporting intensive test of
new algorithms.

REFERENCES

[1] M. Radmanović, “Tools for Calculating Autocorrelation
Spectrum by Using The Wiener-Khinchin Theorem“, 39th Int.
Conf . ICEST 2006, Sofia, 2006.

[2] M. Radmanović, R. Stanković, C. Moraga, “Analysis of
Decision Diagram based Methods for the Calculation of the
Dyadic Autocorrelation”, International Journal of Systemics,
Cybernetics and Informatics, Pentagram Research Publication,
July 2007.

[3] S. Bhawmik, V.K. Narang and P. Pal Chaudhuri, "Selecting
Test Methodologies for PLAs and Random Logic Modules in
VLSI Circuits - An Expert System Approach", The VLSI
Journal, Volume 7, Issue 3, Pages 267-281, September 1989.

[4] K. Iwama, S. Sawada, K. Hino, H. Kurokawa, "Random
Benchmark Circuits with Controlled Attributes", In. Proc. of
European Design and Test Conference 97, 90 – 97, 1997.

[5] F. Brglez, “ACM/SIGDA Benchmarks Electronic Newsletter”,
DAC 93 Edition. June 1993, 1-22,

 http://www.cbl.ncsu.edu/benchmarks.
[6] C. Albrecht, "IWLS 2005 Benchmarks," 2005.

http://iwls.org/iwls2005/benchmark_presentation.pdf
[7] “OpenCores”, www.opencores.org/.
[8] P. Verplaetse, J. Campenhout, and D. Stroobandt, "On Synthetic

Bencmark Generation Methods," In. Proc. of IEEE In.
Symposium on Circuits and Systems, vol. 4, pp. 213-6, 2000.

[9] C. Chang, J. Cong, M. Romesis, and M. Xie, "Optimality and
Scalability Study of Existing Placement Algorithms," IEEE
Transactions on CAD of Integrated Circuits and Systems, vol.
23, no. 4, pp. 537-49, 2004.

[10] R Njuguna, "A Survey of FPGA Benchmarks", Project Report,
http://www.cs.wustl.edu/~jain/cse567-08/ftp/fpga/

[11] J. Darnauer and W. Dai, “A Method for Generating Random
Circuits and Its Application to Routability Measurement”, In.
Proc. of the 1996 ACM 4. In. Symposium on FPGA, 66 – 72,
1996.

[12] J. Harlow and F. Brglez, “Design of Experiments for Evaluation
of BDD Packages Using Controlled Circuit Mutations”, In Proc.
of the In. Conference on Formal Methods in CAD, 64-81, 1998.

[13] R. Rudell, “Espresso Misc. Reference Manual Pages”,
University of California, Berkeley, California, USA,
http://embedded.eecs.berkeley.edu/pubs/downloads/espresso/ind
ex.htm

[14] Microsof Visual Studio 6.0, Microsoft Corporation,
 http://msdn.microsoft.com/en-us/library/ms950417.aspx
[15] Stgroup CIITLAB Software
 http://stgroup.elfak.edu.rs/home/node/4
[16] T. Sasao T, M. Fujita M, “Representations of discrete functions.

Boston”, Kluwer Academic Publishers, 1996.

336

