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Abstract – Traditional approach to the measurement of 
performance for CAD algorithms involve the use of sets of so-
called “benchmark functions”. This paper describes a system 
(software tool), that generates and manipulates random 
constraint two-level representation of a Boolean function 
corresponding to the so called “real-world” functions. The 
software tool satisfies both the requirements to build some 
common benchmarks useful to compare different research 
results, and to create a tool for supporting intensive test of new 
algorithms. The paper gives an overview of the functionalities of 
the software tool and describes parameters that characterize the 
layout of a function. Tool is made publicity available in an 
attempt to extend standard sets of benchmark functions. 
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I. INTRODUCTION 

Benchmark functions design is the basis for the 
performance evaluation of today’s CAD algorithms. The most 
commonly method to verify the competitiveness of a new 
algorithm consists of applying this algorithm to a set of 
benchmark functions design in a given experimental settings. 
The experimental results are then compared to those obtained 
by applying a comparable algorithm to the same set of 
benchmarks design. This implies that the quality of CAD 
algorithm’s evaluation is only as good as the functions design 
is used for benchmarking.  

In recent years, there have been several initiatives for 
assembling benchmark design suits consisting of two-level 
representation of Boolean functions to improve the quality of 
CAD algorithms. An extensive research on benchmarks was 
conducted in both academia and industry. Industry use real 
customer designs as benchmarks to demonstrate performance 
of their products over their competition. However, customer 
designs are usually confidential and provided under non-
disclosure agreements. Most of the benchmarks in academia 
originate from conferences and workshops. For instance 
MCNC.91 [5] and IWLS.05 [6] were published for workshops 
on Logic Synthesis. The MCNC.91 benchmark suite has 
standardized libraries with representative circuit designs 
ranging from simple circuits to advanced circuits obtained 
from industry. MCNC benchmarks are very popular in 
academic research. The IWLS.05 contains diverse circuit 
designs derived from past conference benchmarks, open 

source community of hardware designers, and industry to 
represent a variety of applications. The benchmarks were 
synthesized and organized into a standardized library with a 
common timing infrastructure, standard interfaces and 
reporting formats to promote easy exchange of benchmarks 
and experimental results in the community. Conference 
benchmarks are widely circulated because they are freely 
available in public domains. Open source communities allow 
members to share benchmarks, methodologies, and results. 
For instance OpenCores [7] is an open source community that 
deals with semiconductor intellectual property cores. 
Academia and industrial corporations use freely available 
OpenCores designs to benchmark their products. 

In some cases, benchmark designers turn to automatic 
generation of synthetic benchmarks to evaluate new 
architectures which they can’t efficiently test using existing 
benchmarks [10]. The paper [8] presents an approach to 
generate synthetic benchmarks for evaluating new 
architectures and tools, which don’t have representative 
evaluation benchmark sets. For instance, the paper [9] 
implemented an algorithm for generating synthetic 
benchmarks and used them to study optimality and scalability 
of placer tools. 

The problem of a correct experimental evaluation is crucial 
in several areas of Logic synthesis, in particular when a 
computationally intensive test of specific algorithms is 
needed. This paper describes a software tool (synthetic 
benchmark generator), that generates and manipulates random 
constraint two-level representation of a Boolean function 
corresponding to the so called “real-world” functions. My 
attention to the problem generates from previous work on the 
evaluation of the specialized algorithms for calculation over 
decision diagrams [1], [2]. This previous work has shown that 
evaluation of some algorithms needs for reliable benchmarks, 
like a library of similar problems having different 
characteristics. In particular, I address the problem of defining 
a set of random-based two-level representation of a Boolean 
function according to a number of well designed parameters 
and their management by a software tool. Software tool 
generates files in widely used Berkeley PLA (Espresso) 
format [13] for two-level representation of Boolean function. 
Tool is made publicity available [15] in an attempt to extend 
standardized libraries of benchmark functions. 

 There are many different approaches to generate random-
based benchmarks [3], [4], [8], [11], [12]. When in need of 
random-based two-level representation of a Boolean function 
benchmarks some approach can be followed. The first 
approach consists of random generation of two-level 
representation of a Boolean function with the probability of 
appearance for each element of the representation. The second 
approach consists of random appearance of the basic logic 
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operation sequences and the third approach consists of 
random appearance of the arithmetic logic unit operation 
sequences.  

This paper is organized as follows: Section 2 shortly 
introduces the Berkeley PLA (Espresso) format for two-level 
representation of Boolean function; Section 3 presents the 
technical details of the random-based benchmarks generator 
proposed in this paper; Section 4 describes the software tool 
capabilities to offer an experimental workbench and gives 
some examples of using generated benchmarks. Some 
concluding remarks end the paper.    

II. BERKLEY PLA FORMAT  

The Berkley PLA (Espresso) format is a logical 
representation of a set of Boolean equation. The format has 
been expanded to allow for multiple-valued logic functions, 
and to allow for the specification of the don’t-care set. 
Programs exist to translate a set of equations into this format 
(e.g., eqntott, bdsyn, eqntopla). PLA format is described as a 
character matrix with keywords embedded in the file to 
specify the size of the matrix and the logical format of the 
function.  

The minimum required set of keywords is: .i (specifies the 
number of input variables) and .o (specifies the number of 
output variables) for binary-valued functions, or .mv for 
multiple-valued functions. A complete list of the keywords is 
given in [13].  

The default PLA file formats are compatible with the 
Berkeley standard format for the physical description of a 
PLA (Programmable logic array). It is generally assumed that 
the PLA format is specified such that each row of the PLA fits 
on a single line in the file. A term is represented by a "cube" 
which can be considered either a compact representation of an 
algebraic product term which implies the function value is a 1, 
or as a representation of a row in a PLA which implements the 
term. A cube has an input part which corresponds to the input 
plane of a PLA, and an output part which corresponds to the 
output plane of a PLA. Each position in the input plane 
corresponds to an input variable where a ‘0’ implies the 
corresponding input literal appears complemented in the 
product term, a ‘1’ implies the input literal appears 
uncomplemented in the product term, and ‘-‘ implies the input 
literal does not appear in the product term. For each output, a 
literal ‘1’ means that this product term belongs to the ON-set, 
a ‘0’ means that this product term belongs to the OFF-set, a 
‘−’ means that this product term belongs to the DC-set, and a 
‘˜’ implies this product term has no meaning for the value of 
this function. The ON-set of a Boolean function is defined as 
the set of minterms for which function value is a 1. The OFF-
set of a Boolean function is defined as the set of minterms for 
which function value is a 0. The DC-set (don’t care set) is 
defined as the set of minterms for which the function value is 
unspecified. A function is completely described by providing 
its ON-set, OFF-set and DC-set. A complete description of 
PLA format is given in [13].  

The Berkley PLA format representation is illustrated 
in Figure 1 by a two-input adder. 

III. SOFTWARE TOOL 

In this section I described the basic ideas followed to 
generate random two-level representation of Boolean function 
based on Berkley PLA format. The procedures build two-level 
representation by using a set of parameters to control the 
structure of the cubes.  

The first generation algorithms controls nine two-level 
representation’s characteristics: (1) number of input variables, 
(2) number of output variables, (3) number of cubes, (4) 
probability of appearance for input literal ‘0’, (5) probability 
of appearance for input literal ‘1’, (6) probability of 
appearance for input literal ‘-’, (7) probability of appearance 
for output literal ‘0’, (5) probability of appearance for output 
literal ‘1’, (6) probability of appearance for output literal ‘~’. I 
believe that changing these characteristics it is possible to 
generate a significantly representative subset of similar two-
level representation having different characteristics. The 
proposed generation algorithm is able to generate either a 
large benchmark sets with several levels of difficulty to test 
average performance of a reasoning algorithm or to create a 
particular instance to test such an algorithm in extreme 
situations.  

The basic idea is to randomly map set of input literal ‘0’ on 
set of input part of cube. The random mapping is controlled 
by literal ‘0’ density (probability of appearance). The other 
aspects to control random mapping are input literal ‘1’, input 
literal ‘-‘, output literal ‘0’, output literal ‘1’ and output literal 
‘~’ density.  

The actual generating algorithm can produce only synthetic 
benchmark functions not corresponding to the so called “real-
world” functions.  I am now modifying it for producing also 
benchmark functions corresponding to the “real-world” 
functions.  

The second and the third generation algorithms controls six 
two-level representation’s characteristics: (1) number of input 
variables, (2) number of output variables, (3) number of 
cubes, (4) probability of appearance for input literal ‘0’, (5) 
probability of appearance for input literal ‘1’, (6) layout of 
output ON-set and OFF-set. 

The second generation algorithm proceeds similarly to the 
first generation algorithm with two notable differences. First, I 
don’t use random mapping of input literal ‘-‘. Second, ON-set 
and OFF-set of a Boolean function is defined as a basic logic 

.i 4 

.o 3 

.p 11 
100- 010 
0101 010 
001- 010 
1-00 010 
0-10 010 
1111 010 
-111 100 
11-1 100 
-1-0 001 
-0-1 001 
1-1- 100 
.e 

Fig. 1. Example of Berkley PLA format 
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operation (AND, OR, NOT, NAND, NOR, EXOR and 
EXNOR) sequence.  

In order to guarantee the “real-world” benchmark functions, 
the third generation algorithm extends the second generation 
algorithms by defining ON-set and OFF-set as a arithmetic-
logical operation (adder, multiplier) sequence.                       

To exploit the capabilities of generating random two-level 
representation of Boolean function, I have inserted it in a 
software tool (synthetic benchmark generator) that allows a 
flexible interaction between a user and generation algorithms. 

Software tool is written in MS Visual C++ and use MFC 
technology [14]. It consists of two basic modules: (1) Random 
two-level representation generator and (2) Interaction module 
that allow user to interact with two-level representation in 
Berkley PLA format and to control representation’s 
characteristics as previously described. It is to be noted 
constant possibility of naming and saving a current generated 
function, of choosing particular generating algorithm to be 
used and of additional editing a two-level representation in 
PLA format. 

IV. USING THE GENERATED  BENCHMARKS  

Binary Decision Diagrams (BDDs) are data structures 
convenient for representation of discrete functions. BDDs are 
derived by the reduction of the corresponding binary decision 
trees (BDTs). The reduction is performed by sharing the 
isomorphic subtrees and deleting the redundant information in 
the BDT using the suitably defined reduction rules. BDDs are 
often substantially more compact than traditional normal 
forms such as conjunctive normal form and disjunctive 
normal form. They can also be manipulated very efficiently. 
Hence, BDDs have become widely used for a variety of CAD 
applications, including symbolic simulation, verification of 
combinational logic and verification of sequential circuits. 

Multiple-output switching functions are represented by 
shared BDDs (SBDDs) [16] having a separate root node for 
each output. Thus, SBDDs are obtained by sharing isomorphic 
subtrees in BDDs for outputs of function, considered as 
separate particular switching functions.   

I now show examples of ability of creating subset of similar 
two-level representation having different characteristics. 
Below I give tables of different time and space SBDD testing 
statistics with similar generated two-level representations of 
Boolean functions. I performed the testing on a PC Pentium 
IV on 2,66 GHz with 4 GB of RAM (MS Windows 7 
Ultimate). The memory usage for all tests was limited to 2 
GB.  

It is now possible to show the effectiveness of the work 
perform by the generation algorithms.  

Table 1 describes SBDD time and space statistics using 
generated benchmark based on the first algorithm controlled 
by changing the number of inputs and the density of input 
literal ‘0’. In most cases it is shown that low density of input 
literal ‘0’ in two level representation of Boolean function 
produce more SBDD nodes. Differences in performances 
between functions with different number of inputs can be 
evaluated from generated benchmarks. Several classes of 
functions can be compared under control of some parameters.     

Table 2 describes SBDD time and space statistics using 
generated benchmark based on the first algorithm controlled 
by changing the number of inputs and the density of output 
literal ‘1’. In most cases it is shown that medium density of 
output literal ‘1’ in two level representation of Boolean 
function produce more SBDD nodes. Also, it is shown that 
extremely low and high density of literal ‘1’ increase the size 
of SBDD.         

Table 3 describes SBDD time and space statistics using 
generated benchmark based on the third algorithm controlled 
by changing number of inputs, outputs and cubes. In most 
cases it is shown that large number of cubes produces more 
SBDD nodes. 

I encountered a number of factors that requires repetitions 
of experiments. The major factor is non trivial, unexpected 
and often unexplainable variability of results under slightly 
different parameters condition. 

I just report the fact that first experimentation I am 
performing is quite satisfactory. It opens the possibility to 
create a number of random benchmarks with similar 
parameters and all different on random basis.  

TABLE I 
SBDD TIME AND SPACE STATISTIC USING 

GENERATED BENCHMARKS BASED ON FIRST 
ALGORITHM (DENSITY OF INPUT LITERAL ‘0’) 

Function 
name 

inputs/outputs/cubes 
/density of inp. literal ‘0’ 

time 
[s] nodes 

rnd0_01 75/100/150/5 53.24 1635332
rnd0_02 75/100/150/15 2.94 183136
rnd0_03 75/100/150/25 1.11 71960
rnd0_04 75/100/150/35 0.68 39766
rnd0_05 75/100/150/45 0.54 37683
rnd0_06 75/100/150/55 0.5 32185
rnd0_07 75/100/150/65 0.42 26346
rnd0_08 75/100/150/75 0.4 26755
rnd0_09 75/100/150/85 0.53 28517
rnd0_10 75/100/150/95 0.61 24397
rnd0_11 100/100/150/5 104.02 2352778
rnd0_12 100/100/150/15 3.66 214117
rnd0_13 100/100/150/25 1.24 73326
rnd0_14 100/100/150/35 0.74 46874
rnd0_15 100/100/150/45 0.48 33324
rnd0_16 100/100/150/55 0.46 30385
rnd0_17 100/100/150/65 0.48 32200
rnd0_18 100/100/150/75 0.46 32505
rnd0_19 100/100/150/85 0.56 31984
rnd0_20 100/100/150/95 0.98 38543
rnd0_21 150/100/150/5 54.05 1785260
rnd0_22 150/100/150/15 3.08 181595
rnd0_23 150/100/150/25 1.32 76929
rnd0_24 150/100/150/35 0.67 44976
rnd0_25 150/100/150/45 0.65 43895
rnd0_26 150/100/150/55 0.49 37768
rnd0_27 150/100/150/65 0.64 41911
rnd0_28 150/100/150/75 0.54 38098
rnd0_30 150/100/150/85 0.62 42794
rnd0_31 150/100/150/95 1.35 62956
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TABLE II 
SBDD TIME AND SPACE STATISTIC USING 

GENERATED BENCHMARKS BASED ON FIRST 
ALGORITHM (DENSITY OF OUTPUT LITERAL “1”)  

Function 
name 

inputs/outputs/cubes 
/density of inp. literal ‘0’ 

time 
[s] nodes 

rnd1_01 75/100/150/5 0.09 11282 
rnd1_02 75/100/150/15 0.25 22808 
rnd1_03 75/100/150/25 0.53 39326 
rnd1_04 75/100/150/35 0.89 49733 
rnd1_05 75/100/150/45 0.96 56972 
rnd1_06 75/100/150/55 1.34 57661 
rnd1_07 75/100/150/65 0.95 43908 
rnd1_08 75/100/150/75 1.51 59644 
rnd1_09 75/100/150/85 1.17 50242 
rnd1_10 75/100/150/95 0.62 28826 
rnd1_11 100/100/150/5 0.11 13891 
rnd1_12 100/100/150/15 0.28 26655 
rnd1_13 100/100/150/25 0.53 41679 
rnd1_14 100/100/150/35 0.68 44775 
rnd1_15 100/100/150/45 1.03 57787 
rnd1_16 100/100/150/55 0.91 51122 
rnd1_17 100/100/150/65 1.26 57370 
rnd1_18 100/100/150/75 1.41 59082 
rnd1_19 100/100/150/85 0.96 40281 
rnd1_20 100/100/150/95 0.48 23023 
rnd1_21 150/100/150/5 0.14 18338 
rnd1_22 150/100/150/15 0.31 32156 
rnd1_23 150/100/150/25 0.51 44581 
rnd1_24 150/100/150/35 0.84 58650 
rnd1_25 150/100/150/45 0.84 56385 
rnd1_26 150/100/150/55 1.21 67633 
rnd1_27 150/100/150/65 1.32 62448 
rnd1_28 150/100/150/75 1.23 55816 
rnd1_30 150/100/150/85 1.38 57329 
rnd1_31 150/100/150/95 0.62 34542 

TABLE III 
SBDD TIME AND SPACE STATISTIC USING 

GENERATED BENCHMARKS BASED ON THIRD 
ALGORITHM  

Function name inputs/outputs/cubes  time [s] nodes 
rnd_mul32_01 64/64/250 0.29 17675 
rnd_mul32_02 64/64/500 0.81 34727 
rnd_mul32_03 64/64/750 1.59 50998 
rnd_mul32_04 64/64/1000 2.74 67391 
rnd_mul48_01 96/96/250 0.43 27642 
rnd_mul48_02 96/96/500 1.27 54327 
rnd_mul48_03 96/96/750 2.59 80574 
rnd_mul48_04 96/96/1000 4.38 106761
rnd_mul60_01 120/120/250 0.57 35098 
rnd_mul60_02 120/120/500 1.63 69059 
rnd_mul60_03 120/120/750 3.35 102815
rnd_mul60_04 120/120/1000 5.85 135944
 
. 

V. CONCLUSION 

This paper describes a software tool that generates and 
manipulates random constraint two-level representation of a 
Boolean function in Berkley PLA format corresponding to 
“real-world” functions. The tool includes three approaches to 
build random two-level representation by using a set of 
parameters to control the structure of the cubes.  

The tool satisfies both the requirements to build some 
common benchmarks useful to compare different research 
results, and to create a tool for supporting intensive test of 
new algorithms.  
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