
 

Full Perturbation Analysis of the Discrete-time LMI 
Based H∞ Quadratic Stability Problem 

Andrey S. Yonchev1, Mihail M. Konstantinov2 and Petko H. Petkov3 

Abstract – The quadratic H∞ control ensuring closed-loop 
performance γ can be implicitly realized by the solutions Q, Y of 
a system of linear matrix inequalities (LMIs). The paper is 
concerned with performing linear full perturbation analysis for 
the discrete-time LMI based H∞ quadratic stability problem. The 
sensitivity analysis of the perturbed matrix inequalities is 
considered in a similar manner as for perturbed matrix 
equations, after introducing a suitable right hand part, which is 
slightly perturbed. The proposed approach leads to tight linear 
perturbation bounds for the LMIs' solutions to the H∞ quadratic 
stability problem. Numerical example is also presented 
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I. INTRODUCTION 

In many control problems, the design constraints have a 
simple reformulation in terms of linear matrix inequalities 
(LMIs). This is hardly surprising, given that LMIs are direct 
byproducts of Lyapunov based criteria, and that Lyapunov 
techniques play a central role in the analysis and control of 
linear systems, see [1,2] and the literature therein. 

The H∞ control problem is a good illustration of this point. 
Indeed, the H∞ constraints can be expressed as a single matrix 
inequality via the bounded real lemma [3]. Even though the 
H∞ control problem has a solution in terms of Riccati 
equations [4], the LMI approach remains valuable for several 
reasons. First it is applicable to all plants without restrictions 
on infinite or pure imaginary invariant zeros. Secondly, it 
offers a simple and insightful derivation of the Riccati based 
solvability conditions [5]. In addition, the LMI based H∞ 
control is practical thanks to the availability of efficient 
convex optimization algorithms, based on the interior point 
method [6], and software [7]. 

In this paper we propose an approach to perform full linear 
perturbation analysis of the LMI based H∞ quadratic stability 
problem via introducing a suitable right hand part in the 
considered matrix inequalities. 

We use the following notations: m nR × - the space of real 
m n×  matrices; 1n nR R ×= ; nI  - the identity n n×   matrix; 

ne - the unit 1n × vector; TM - the transpose of M ;  †M - 

the pseudo inverse of M ;
2 max|| || ( )M Mσ=  - the spectral 

norm of M , where 
max ( )Mσ  is the maximum singular value 

of M ; ( ) m nv e c M R∈ - the column-wise vector 
representation of m nM R ×∈ ; 

,
m n m n

m n R ×Π ∈ - the vec-
permutation matrix, such that 

,( ) ( )T
m nvec M vec M= Π ; 

M P⊗ - the Kroneker product of the matrices M  and P . 
The notation “:=” stands for “equal by definition”.  

The remainder of the paper is organized as follows. In 
Section 2 we shortly present the problem set up and objective. 
Section 3 describes the performed linear full perturbation 
analysis of the LMI based H∞ control problem. Section 4 
presents a numerical example before we conclude in Section 5 
with some final remarks. 

 

II. PROBLEM SET UP AND OBJECTIVE 

Consider the linear discrete-time system   

                          
( 1) ( ) ( ),
( ) ( ) ( )

x k Ax k Bu k
y k Cx k Du k

+ = +
= +

                        (1) 

where ( ) nx k R∈ , ( ) mu k R∈ ,and ( ) ry k R∈ are the system 
state, input and output vectors respectively, and , , ,A B C D   
are constant matrices of compatible size.  

We consider an LMI approach to solve the H∞ quadratic 
stability problem, as stated in [8] 
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          (2) 

which is actually an Eigenvalue Problem (EVP) with respect 
to the variables P and γ. Here we assume that the optimal 
closed-loop performance γopt of the system (1) is already 
obtained. 

In order to obtain quadratic H∞ stability and to ensure 
closed-loop performance γ it is necessary to design a state-
feedback control u=Kx. To transform LMI (2) we apply Schur 
complement argument [9] to obtain the following inequality: 

1 ( ) 0 0
( ) 0 ( )

0, 0,
0 0 0
0 0

T T
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P
I

C DK I
γ

γ

−⎡ ⎤− +
⎢ ⎥+ − +⎢ ⎥ < >
⎢ ⎥−
⎢ ⎥

+ −⎣ ⎦

(3) 

with respect to the variables K, P and γ. We pre-and post-
multiply inequality (3) by 1{ , , , }diag I P I I−  and introduce  
change of variables such that Q=P-1 and Y=KP-1 to obtain the 
following system of LMIs: 
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(4) 

The main objective of the paper is to perform a linear 
sensitivity analysis of the LMI system (4) near the optimal 
value of γ, needed to solve the H∞ quadratic stability problem. 

Suppose that the matrices A, B, C, D are subject to 
perturbations , , ,A B C DΔ Δ Δ Δ and assume that they do not 
change the sign of the LMI system (4). The full perturbation 
analysis of the discrete-time LMI based H∞ quadratic stability 
problem is aimed at determining perturbation bounds of the 
LMIs (4) near the optimal value of γ, as functions of the 
perturbations in the data A, B, C, D and in γopt. 

III. LINEAR FULL PERTURBATION ANALYSIS 

We perform perturbation analysis of the LMI (4) for the 
discrete-time system (1) 

   

( ) 0 0
( ) 0

0
0 0 ( ) 0
0 0 ( )

T

T

Q Q ABQY
ABQY Q Q CQDY

CQDY
γ γ

γ γ

⎡ ⎤− +Δ
⎢ ⎥− +Δ⎢ ⎥ <
⎢ ⎥− +Δ
⎢ ⎥

− +Δ⎣ ⎦

, (5) 

where ( )( ) ( ) ( )T T T TABQY Q Q A A Y Y B B= +Δ +Δ + +Δ +Δ  

( )( ) ( )( )ABQY A A Q Q B B Y Y= +Δ +Δ + +Δ +Δ ,

( )( ) ( ) ( )T T T TCQDY Q Q C C Y Y D D= +Δ +Δ + +Δ +Δ , 

( )( ) ( )( )CQDY C C Q Q D D Y Y= +Δ +Δ + +Δ +Δ . We have to 
study the effect of the perturbations , , ,A B C DΔ Δ Δ Δ and 
λΔ  on the perturbed LMI solutions *Q Q+Δ  and 
*Y Y+Δ , where *, *Q Y  and ,Q YΔ Δ  are the nominal 

solution of the inequality (4) and the perturbations, 
respectively. The essence of our approach is to perform 
perturbation analysis of the inequality (4) in a similar manner 
as for a proper matrix equation after introducing a suitable 
right hand part, which is slightly perturbed. Thus for LMI (5) 
we have: 

  
1

( * ) * 0 0
* ( * ) 0 *

* 0,
0 0 ( ) 0
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T

T
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 (6) 

where * ( * )( ) ( * ) ( )T T T TABQY Q Q A A Y Y B B= +Δ +Δ + +Δ +Δ , 

* ( )( * ) ( )( * )ABQY A A Q Q B B Y Y= +Δ +Δ + +Δ +Δ
* ( * )( ) ( * ) ( )T T T TCQDY Q Q C C Y Y D D= +Δ +Δ + +Δ +Δ  ,     

( )( * ) ( )( * )CQDY C C Q Q D D Y Y= + Δ +Δ + + Δ +Δ  and 
L* is obtained using the nominal LMI  

* * * 0 0
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* 0,
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opt

Q Q A Y B
AQ BY Q Q C Y D

L

CQ DY
γ

γ

⎡ ⎤− +
⎢ ⎥+ − +⎢ ⎥= <⎢ ⎥−
⎢ ⎥
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(7) 

The matrix 1LΔ  is due to the data and closed-loop 
performance perturbations, the rounding errors and the 
sensitivity of the interior point method that is used to solve the 
LMIs. 
Using the relation (7) the perturbed equation (6) may be 
written as 

                                                                                       

1 ,Q Q LΔ + Ω = Δ                    (8) 
where 
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Here the terms of second and higher order are neglected. The 
relation (8) may be written in a vector form as 

             1( ) ( ) ( ),Q Qvec vec vec LΔ + Ω = Δ            (9) 

where
( ) [ , ,0,0, , ,0, ,0,0,0,0,0, ,0,0]

                 * ( ) ,
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Further we obtain the expression 
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6 1
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t
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Finally the relative perturbation bound for the solution *Q  of 
the LMI (4) has the form 
 

2 2 2 2
1 2 3

2 2 2 2 2

2 2
4 5 6

2 2 2

|| || || ( )|| || ( )|| || ( )||1
|| ( *)|| || ( *)|| || ( )|| || ( *)|| || ( )||

|| ( )|| | | || (1                   +
|| ( *)|| || ( )|| | |opt

q vec A vec Y vec BT T T
vecQ vecQ vec A vecY vec B

vec C vecT T T
vecQ vecC

γ
γ

⎛ ⎞Δ Δ Δ Δ
≤ + +⎜ ⎟

⎝ ⎠

Δ Δ Δ
+ + 2

2

1 2
1

2 2

)||
|| ( )||

|| ( )||1                   +
|| ( *)|| || ( *)||

D
vec D

vec LL
vecQ vec L

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
⎛ ⎞Δ
⎜ ⎟
⎝ ⎠

                  

(11) 
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may be considered as individual relative condition numbers of 
the LMI (4) with respect to the perturbations 

, , , ,A B C D YΔ Δ Δ Δ Δ  and γΔ . 
In a similar way the relative perturbation bounds for the 
solution *Y  of the LMI (4) may be obtained using the 
following expression 
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Here the terms of second and higher order are neglected. The 
relation (12) may be written in a vector form as 

             2( ) ( ) ( ),Y Yvec vec vec LΔ + Ω = Δ            (13) 
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Finally the relative perturbation bound for the solution *Y  of 
the LMI (4) has the form 
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may be considered as individual relative condition numbers of 
the LMI (4) with respect to the perturbations 

, , , ,A B C D QΔ Δ Δ Δ Δ  and γΔ . 

IV. NUMERICAL EXAMPLES 

Consider the discrete-time system (1), where  

1 0.01 0 0 0 0
, ,
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, .
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The perturbations in the system matrices of the discrete-time 
system are chosen as 

       10 , 10 , 10 ,i i iA A B B C C− − −Δ = × Δ = × Δ = ×

1 210 , * 10 , * 10 , 10

* * 10 , * 10  for .

i i i i
opt

i i

D D L L L L

Q Q Y Y i=8,7,…,4

γ γ− − − −

− −

Δ = × Δ = × Δ = × Δ = ×

Δ = × Δ = ×
 

The perturbed solutions *Q Q+Δ and *Y Y+Δ are 
computed based on the method derived in [5] and using the 
software [7]. The relative perturbation bounds for the 
solutions *Q and *Y  of the LMIs (4) are obtained by the 
linear bounds (11) and (15), respectively.  

The results obtained for different values of i  are shown in the 
following table 

 

TABLE I 
i 2

2

|| ||
|| ( *) ||

q
vec Q
Δ  Bound 

(11) 
2

2

|| ||
|| ( *) ||

y
vec Y

Δ Bound 

(15) 
8 3.59*10-8 4.92*10-7 1.54*10-8 5.32*10-7 

7 3.59*10-7 4.92*10-6 1.54*10-7 5.32*10-6 

6 3.59*10-6 4.92*10-5 1.54*10-6 5.32*10-5 

5 3.59*10-5 4.92*10-4 1.54*10-5 5.32*10-4 

4 3.59*10-4 4.92*10-3 1.54*10-4 5.32*10-3 

 
The obtained perturbation bounds (11) and (15), based on the 
presented solution approach, are close to the real relative 
perturbation bounds 2

2

|| ||
|| ( *) ||

q
vec Q

Δ  and 2

2

|| ||
|| ( *) ||

y
vec Y

Δ , thus 

they are good in sense that they are tight. 

V. CONCLUSION 

The linear full perturbation analysis of the discrete-time 
LMI based H∞ control problem has been studied. Tight 
perturbation bounds, which are linear functions of the data 
perturbations, have been obtained for the matrix inequalities 
determining the problem solution. Based on these results we 
have presented  numerical examples to explicitly reveal the 
performance and applicability of the proposed approach to 
analyze the sensitivity of the discrete-time LMI based H∞ 
control problem. 
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