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Abstract – A class of linear systems subjected to an unmatched 
external disturbance is considered within the framework of 
sliding mode control (SMC) theory. The paper offers a sliding 
hyperplane design method to minimize the effects of the 
unmatched disturbance upon the SM dynamics. The 
optimization criterion is minimization of the steady state vector 
norm. The suggested approach has been demonstrated on a 
numerical example. 
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I. INTRODUCTION 

The most prestigious property of the variable structure 
control systems (VSCSs) in sliding mode (SM) [1] is their 
invariance to parameter and exogenous disturbances, under so 
called matching conditions [2]. Physical meaning of these 
conditions is that disturbance acts through the control channel, 
i.e. the control is able to change coincidentally with the 
disturbance. Although there are many examples of systems 
where this requirement is fulfilled, there are still systems that 
structurally do not meet these conditions. While VSCSs in SM 
are completely insensitive to the matched uncertainties, on the 
other hand the SM dynamics, which is prescribed by the 
choice of the sliding manifold, is vulnerable to the unmatched 
uncertainties. In some cases sliding motion along certain 
manifolds may result in severe dynamics deterioration under 
action of unmatched uncertainties. 

Several approaches are present in dealing with unmatched 
uncertainties, within the context of SM control (SMC): a 
continuous nonlinear control strategy [3], dynamical approach 
by means of pseudo-control inputs introduction into the 
reduced order system [4]-[6], a new invariance condition [7] 
in terms of linear matrix inequalities (LMI). All mentioned 
methods consider unmatched uncertainties having parametric 
nature, which diminish as system states approach origin. 
Therefore asymptotic stability can be ensured. 

When it comes to the unmatched uncertainties that besides 
parametric contain external disturbances as well, asymptotic 

stability can not be attained. Although it is possible to 
establish a SM in such systems, the unmatched part of an 
external disturbance has impact on SM dynamics, forcing the 
system trajectory not to converge to the origin but to wander 
in its neighborhood along the sliding manifold. One way of 
addressing this problem may be to construct a sliding 
manifold that reduces system sensitivity in SM upon 
unmatched disturbances. A sliding manifold design that 
minimizes equivalent perturbation is suggested in [8], whereas 
another sliding manifold selection is proposed in [9], using the 
invariant ellipsoid method. 

As in [8] and [9], this paper also searches for an adequate 
sliding hyperplane selection in a class of linear systems with 
scalar control and bounded unmatched external disturbance 
vector, which minimizes in some sense the impact of the 
disturbance onto the SM motion. The chosen optimization 
criterion here is minimization of the steady state vector norm. 
A systematic procedure for the sliding hyperplane design is 
developed, guaranteeing minimal static error. The proposed 
design method has been investigated on a numerical example. 

II. SM IN CASE OF UNMATCHED DISTURBANCES 
Consider a class of linear systems with scalar control that 

can be represented by the following state space model 

 )()()()( ttutxt dbAx ++=& , (1) 

where 1×ℜ∈ nx  is the state vector, ℜ∈u  is the control signal, 
nn×ℜ∈A  is the system matrix, 1×ℜ∈ nb  is the control input 

vector and 1×ℜ∈ nd  is a bounded external disturbance vector, 
∞<≤ Mt ||)(|| d , 0>∀t . It is assumed that the pair ),( bA  is 

controllable and the matching condition [2] 

 )(
~

)( tdt bd = , (2) 

is not fulfilled. This means that there does not exist a function 
)(

~
td  satisfying (2). Let a sliding hyperplane 0)( =xσ  be 

defined by the switching function 

 ],,,[,)( 21 nccc Λ== ccxxσ , (3) 

which includes the state space origin as the equilibrium point. 
SM reaching and existence condition ||σησσ −≤& , 0>η  

can be attained by an appropriate discontinuous control 

 )sgn()( 1 σα+−= − cAxcbu  (4) 

if the switching gain overcomes disturbance M|||| c>α . 
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Hence, SM along 0)( =xσ  will be attained in a finite time. 
System dynamics in ideal SM is obtained by transformation of 
(1) into the regular form by coordinate change xPx 1= , where 
the transformation matrix is given by [1] 
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cM  is the controllability matrix and ia , ni ,,1Λ=  are the 
coefficients of the characteristic polynomial 

12
1)det( asasass n

n
n ++++=− − ΛAI , where s is a complex 

variable. The resulting regular form is obtained as 
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The switching function may be rewritten using the regular 
form as [ ]1,, 011 cccPcxcxcPcx =====σ , with vector 

[ ]1210 −= nccc Λc . In SM 0)( 0 =+= nr xxcxσ , which 
gives rnx xc0−= , meaning that the SM dynamics is described 
by a reduced order system 
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For the controllable pair ),( bA , the pair ),( 1211 aA  is also 
controllable and by selection of vector 0c  the eigenvalues of 
the system matrix )( 01211 caAA −=r  can be adjusted. 
Characteristic equation of the system in SM is given by 
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In systems where matching condition (2) is fulfilled, 
0d =r  and the system is invariant to disturbances in SM, 

confirmed by (7). Its dynamics (8) exclusively depends on the 
sliding hyperplane parameters. System (7) becomes 
autonomous and the origin is equilibrium point. In an 
unmatched case, 0d ≠r  so the SM dynamics (7) is affected 
by a disturbance. A new equilibrium point on the sliding 
hyperplane is formed depending on the disturbances, since the 

SM existence conditions are satisfied by the control signal. 
Steady state of the system (7) can be easily evaluated using 
the following relations 
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where )(lim)( t
t

•=∞•
∞→

. Since the sliding hyperplane 

parameters ensures stable eigenvalues of rA , the system 
motion caused only by initial condition )0(rx  will converge 
into the origin. Therefore, (9) may be expressed as 
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Steady state (10) will exist if )(∞rd  exists. Based on (10), 
using (6) and (7), the transformed steady state can be 
calculated as 

,])()),(([)( T
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showing that it depends on the disturbance steady state and 
the sliding hyperplane coefficients. The only way to 
intentionally affect the steady state error is by means of 
sliding hyperplane selection. Hence, apart from defining the 
SM dynamics, hyperplane design also has impact on the 
system sensitivity to unmatched disturbances. 

Original steady state is obtained using coordinate 
transformation )()( 1 ∞=∞ xPx . If 1P  is expressed in general 
form 
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original steady state is obtained as 

 .

)()),((

)()),((

)()),((

)(

1

1
)1(,10

1

1
)1(,2210

1

1
)1(,1110

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∞−∞

∞−∞

∞−∞

=∞

∑

∑

∑

−

=
+

−

=
+

−

=
+

n

i
ininr

n

i
iir

n

i
iir

pdpa

pdpa

pdpa

cd

cd

cd

x
Μ

 (14) 

392



III. SLIDING HYPERPLANE DESIGN 

Since SM dynamics is sensitive to unmatched disturbances, 
a sliding hyperplane design procedure will be derived that 
provides minimization of the steady state error for the 
considered class of linear systems with unmatched external 
disturbance. Euclid vector norm 2/1T )(|||| xxx =  may serve as 
a measure of the steady state distance from the origin. 
Therefore, the norm of the steady state (14) is obtained as 

 ∑ ∑
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The only adjustable parameter )),(( 0cd ∞ra  will be 
determined according to the condition that the norm (15) has 
its minimum for maa = , i.e. 
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By differentiation of (15) with respect to a, (16) transforms 
into the following equation 
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whose solution is 
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Now, vector 0c  should be calculated form (12) using the 
obtained solution ma . (12) is a single equation with n-1 
unknowns that cannot be uniquely solved. Solution can be 
reached only by reducing the number of degrees of freedom to 
one. By setting 0c , and consequently the vector c , 1−n  
eigenvalues of the SM dynamics (8) can be independently 
chosen. Reduction of degrees of freedom can be done by 
imposing certain conditions to the eigenvalues. For example, 
if a single multiple eigenvalue pss −= , 0>ps  of order 1−n  
is required, number of degrees of freedom is one. The desired 
SM characteristic equation can be expressed as 
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Comparison of (19) with (8) gives the needed sliding 
hyperplane coefficients as functions of ps  
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Using (20), the equation (12) becomes 
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Recall that ma , which minimize the norm (15), has been 
already determined using (18), hence (21) is a polynomial 
equation of order 1−n  with respect to unknown ps . This 
equation is now solvable and has 1−n  solutions. The number 
of positive real solutions indicates the number of possible 
different stabile hyperplanes that minimizes the norm (15). 
Naturally, the largest positive real solution should be selected 
because it guaranties the fastest SM dynamics. For the 
selected ps , the components of vector 0c  are calculated 
according to (20). Finally, the original vector c  of the sliding 
hyperplane can be determined using the inverse 
transformation. 

 [ ] 1
10 1 −= Pcc . (22) 

IV. A NUMERICAL EXAMPLE 

Consider a stable controllable third order linear system 
whose model (1) is represented by 
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Note that the disturbance vector is unmatched since condition 
(2) can never be reached. The transformation matrix and the 
regular form are defined by 
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Relation (18) gives 11.0−=ma  that according to (14) 

ensures the steady state [ ]T78.089.022.1)( −=∞x , i.e. the 
norm 7.1)( =∞x . Two eigenvalues, defined with 

8.191 −=ps  and 8.12 =ps , are obtained by solving (21) for 
11.0−=ma . Positive real value 8.1=ps  is selected in sliding 

plane determination, which according to (20) and (22) 
produces [ ]03.103.063.0 −−−=c . 

A very simple control law (4) is employed in the realization 
of SM. Switching gain 5=α  provides reaching and existing 
conditions in the presence of the disturbance. The control 
signal is depicted in Fig. 1a. It can be noticed that the high-
frequency switching component is dominant, which would 
inevitably induce unwanted chattering in a real system. 
However, the reason for the application of such control 
algorithm is that the attained SM as much as possible 
resembles an ideal SM, which is the assumption of the 
conducted analysis. Fig. 1b shows the switching function, 

393



whose annulment confirms occurrence and existence of SM, 
even after the action of the unmatched disturbance. 

 
Fig. 1. a) Control signal; b) Switching function. 

 
System trajectory in the phase space is depicted in Fig. 2. 

From the initial state [ ]T235)0( −=x  system trajectory 
reaches and slides along the plane into the origin. After the 
action of the unmatched disturbance, phase point is thrown 
out of the origin along the plane into a new equilibrium point. 
Time response of the state coordinates for this case is given in 
Fig. 3, by solid lines. Data analysis has confirmed the 
analytically predicted steady state and its norm. 

 
Fig. 2. System trajectory and the sliding plane 

 
Fig. 3. State coordinates (solid lines for sp=1.5, dashed lines for 

sp=3). 
 

In order to prove that the obtained norm is minimal, some 
other slope of the sliding plane is selected. Namely, the 
chosen new sliding plane ensures faster SM dynamics, given 
by 3=ps , which results in [ ]213 −−−=c . Recalculated 
steady state and its norm are respectively 

[ ]T44.122.155.0)( −=∞x  and 97.1)( =∞x , which are 
confirmed by the state coordinate response in Fig. 3, denoted 
by the dashed lines. The obtained norm is larger then the 

previous one. Unexpectedly, the faster SM dynamics of 
prescribed by the new plane, which better rejects matched 
disturbances, produces worse performance under action of the 
unmatched disturbances. 

V. CONCLUSION 

The paper studies the influence of unmatched disturbances 
upon SM motion and offers a sliding hyperplane design 
method that minimizes the system sensitivity against such 
disturbances, by minimization of the steady state vector norm. 
It is demonstrated that for a class of linear systems this 
optimization task can be explicitly solved by renouncing of a 
certain number of degrees of freedom in SM eigenvalues 
allocation. 

The developed systematic sliding hyperplane design 
procedure has been demonstrated on an illustrative numerical 
example. The simulation results confirm the analytically 
predicted behavior, and the calculated minimum of the steady 
state norm is achieved. It is also shown that certain SM 
features in systems satisfying the matching conditions are not 
necessarily present when unmatched disturbances arise. 
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