

Extracting Cuts From Video Streams in Real Time
Jugoslav Joković, Danilo Đorđević

Abstract – An approach for extracting scene boundaries for
streaming videos is proposed. Presented approach extends the
mainstream hard cut scene detection algorithm based on the
color-histogram difference by adding new criteria to increase
precision and improve computational efficiency, by using
additional detection criterion based on spatial distribution of
luminance blocks difference during scene cut (and also by
utilizing the temporal properties of video by sampling at
different time resolutions). We note the speed of extraction which
is crucial in streaming tasks and give results on precision and
reliability.

Keywords – Cut detection, Video Summarization, real-time

I. INTRODUCTION
A scene is defined as sequence of successive video frames

captured with one continous operation of capture device.
Isolating the original structure of the video by dividing the
original sequence to separate scenes is called temporal video
segmentation. It strives to detect transitions created by author
and find boundary of original scenes that video consist of.

Automatic scene cut detection as a primary method in
temporal video segmentation initiates starting and basic step
of every video signal processing for displaying or further
manipulation. Among primary application of video
segmentation in creating the new content (video editing),
automatic scene cut detection finds its application in
algorithms for improving video quality (video enhancement),
as well as in systems for detection of copyrighted videos and
repeated sequnces. For the first case it is desirable to know
scene boundaries for complex object tracking algorithms to
stop running on the position where scene breaks. In the second
case the exact times where scene change occured is used as a
fingerprint for the video sequence, for later matching with
other fingerprints in the database. Here it is also necessary to
keep the precision of scene change detection to the videos that
are transformed (purposefully or not) with changes in frame
rate, bitrate, aspect, contrast etc.

Thanks to the advance of computer science and video
technologies there are plenty of effects in video editing and,
consequently, a lot of transition types. Majority of these
effects can be classified into three base categories, where each
transition type can be mathematicaly modelled:

1. Abrupt transitions (cuts), defined as direct concatenation
of two scenes without adding any kind of transitional frames,
so that transition sequence is empty.

2. Blended transitions (dissolves), where the sequence
I(t,x,y) of duration T results from combining two sequnces,

where the first sequence vanishes and second is forming:
I(t,x,y) = f1(t) * I1(t,x,y) + f2(t)*I2(t,x,y), t∈ [0,T]

3. Nonlinear transitions (without specific pattern), where
the sequence I(t,x,y) is created by combining two sequences
I1(t,x,y) and I2(t,x,y) without mathematicaly specified pattern.

Temporal video segmentation is widely researced in video
processing field. Resulting methods concentrate mainly on
first two transition types, which are in majority of all
transitions that are used in real video streams, while
computationaly generated effects are mostly ignored.
Alternative clasification of scene transitions [1] is based on
how two scenes are spatialy and temporaly divided. Their
detection is based on identification of new statistical process
that the video sequence is being exposed (hard cuts), or that
the video sequence was scaled with mathematicaly simple and
well defined function (dissolves).

Basic idea of transition detection (scene cut) detection
results from assumption that some video characteristics are
different during transitions than during scene itself. This is the
reason why algorithms for scene cut detection select some
features and analyze their change. When significant change of
monitored video features occurrs, a scene cut is declared.
Color histogram, edges [2] or motion are the main types of
video features used for transition detection [1,3]. Usually,
smallest units of video – frames - are monitored, where each
frame is characterised individualy with its feature [1,2,3,4].
Another (seldom) approach is monitoring the group of frames
with some common feature, such as motion [5]. Scene change
expresses locality principle, meaning that reliable detection is
based on some local frame (frame feature) group where
discontinuity occurs [6]. Generally, the steps for scene cut
detection typical algorithms are frame feature selection,
forming local feature group and feature change detection.

This paper presents results of use of algorithms for hard cut
scene detection based on on some subsistent examples. For
efficiency improvement address approach with additional
criterion of spatial distribution of luminance blocks during
scene change and time sampling in smaller time intervals and
detection on larger time sampling intervals where we used.

One of the possible applications of scene detection is in
video summarization area. Typically, video is continuously
being read and segmented by using transition detection
techniques and than saved back on (other) storage. Once cuts
are extracted, it is possible to choose representative by
selecting one frame from each cut (usually first or the middle
frame) but other combinatations exists as well [8]. It is crucial
for such systems to have very fast, possibly real-time
transitions detection. A simplified diagram for this systems is
shown in Fig 1. For performing transition detection we do not
assume in our work that the video stream is MPEG encoded
stream [9], although this assumption can simplify some
processing steps since in these cases frames are already
divided into blocks.

Authors are with the Faculty of Electronic Engineering,
Aleksandra Medvedeva 14, 18000 Nis, Serbia, E-mail:
jugoslav.jokovic@elfak.ni.ac.rs, djdane81@gmail.com

575

 Fig. 1. Typical video summarization system diagram

II. BASE ALGORITHM FOR HARD CUT SCENE DETECTION
For all frame features used in hard cut scene detection, in

literature, as well as in practice, the ones that treat spatial
pixel distribution (luminance and chrominance) dominate
among others. For its fingerprint compactness and amount of
information in it, colour histogram highlights here. It can be
crated by concatenation of component histograms to one
integral fingerprint, tending to create such fingerprint
representation that can be suitable for later comparison with
other fingerprints with proper metrics. Metrics most used are
simple (Manhattan) distance, Euclidean distance and
histogram intersection. Regardless on the metrics being used,
it is necessary to perform histogram normalization according
to the frame size before comparison with other histograms.
When scaling the frame to larger spatial resolution the
histogram is also being scaled. Moreover, histogram in YCbCr
domain is used much more than histogram in RGB domain,
for its dominance in video format representation.

Abrupt scene changes are detected by finding the
discontinuity in appropriate video frame representation and
common approach is by calculating differences between frame
features (color histograms) among consecutive frames and
monitoring their difference - CHD (Color Histogram
Difference). Scene changes (cuts) are declared when this
difference surpasses some determined threshold. Typical CHD
shift is depicted in Figure 2. It is obvious that scene change
occurs where CHD plot peaks.

Fig. 2. Color Histogram Difference (CHD) for the video sequence »News«

The simplest approach for hard cut scene detection is by
taking the global threshold (for example ratio between
maximum peak intensities or a function between average

values of CHD). Nevertheless, this approach is inefficient
because sometimes small changes in CHD can seem as scene
cut and vice versa – scene cut indeed occurred but change in
CHD was not substantial to surpass the fixed threshold, what
depends greatly on the video content being monitored. By
introducing the adaptive threshold [6] that establishes itself on
average CHD intensity parameter in the window of diameter
w. In that case for every frame in the sequence of 2w+1
frames in width, where w ranges from 3 to 7 frames, and for
all frames inside the window (except the central one) the
average value of chosen feature (CHD) is calculated. The hard
scene cut over central frame in window is declared when
following conditions are fulfilled: its CHD (or f(x)) is
maximal inside widow:

f(t) ≥ f(x) ∀x∈[t–w,t+w] (1)

and ratio between its CHD value and average CHD values in
the window (excluding central frame) crosses some
empirically defined threshold ratio:

 (f(t)+ c)
ratio = (2)

 c + ∑ f(x)
 x∈[t–w,t+w]\{t}

As a consequence of characteristic appearances in video
relating to frequent motion, a new condition is added – CHD
has to be significantly greater (ranging from 2 to three times)
than the next maximum CHD in the window. Parameter c in
expression (2) is used as a correction to avoid situations when
scene changes around central frame are neglectingly small,
and where a larger motion in the scene (central frame) is
manifested as a peak in CHD plot leading to false detection.
This method for hard cut scene detection confirmed greatest
accuracy and precision [2,4,6].

Functional limits of this algorithm is that it cannot detect
two scene cuts in one window, what can be a drawback in the
action movies where scene changes can occur even on 3 to 5
frames, but because of great speed human audio-visual system
treats these changes as a part of the one same scene.

III. ALGORITHM FOR SCENE CUT DETECTION WITH
ADDITIONAL SPATIAL-TEMPORAL CRITERION

By testing the base algorithm on large video test sequences
it can be noticed that previously described approach has
drawbacks especially with encoded videos with large
difference between I- and P- frames, what can defect the CHD
between successive frames. Also, CHD can be disturbed with
previously described insignificant motion on the scene which
is perceptually irrelevant. Both cases exhibit very little
luminance change.

Following that point, an additional criterion is introduced –
luminance difference (YD), which is based on frame
luminance block division and tracking the luminance change
on kxk blocks for the frames where cut is suspected to occur,
where YD is calculated as a sum of absolute difference
between each of kxk corresponding luminance block average
for two frames.

576

Algorithm for detection can be described by using the
following steps:

1. Decode each video frame in video stream by using the
ffmpeg video library [7] for frame decoding. For each frame
calculate color histogram (convert the 3D color histogram to
1D representation), by performing quantization of each pixel
intensity value and than form 2D matrix which will sum pixel
intensities on x and y coordinates for each video component
(RGB or YCbCr).

2. Calculate difference in color histograms between two
consecutive frames (CHD) by using the sum of absolute
differences of proper array elements (Manhattan distance).

3. For each CHD array element (for each frame feature)
create a window of size 2w+1 where mean value of CHD will
be calculated for elements within window, as well as ratio of
this mean value with window-central CHD value.

4. If following conditions are met, declare scene cut:
- Central frame has maximum value inside window
- It is n times greater than the next maximum CHD value

within window
- The ratio between CHD of the central frame and the mean

value of CHD values within window is greater than some
empirically declared threshold.

- Luminance difference (YD) on kxk blocks for the frames
surpasses empirically declared threshold (global threshold)

This approach can help to eliminate flaws of base algorithm,
to eliminate compression effects and to lower detection of
motion as cuts, with lowering empirically chosen thresholds.
Introducing the new criterion further improves base algorithm
for cuts being missed in the cases of high motions scenes
(action movies) where motion inserts high CHD values very
close to the actual cuts, causing the average CHD within
window to be much higher than in one at still scenes. Similar
problem occurs also in videos that have smaller frame rate and
high motion on the scene that cover larger portion of the
frame.

This implementation of the algorithm is especially suitable
for streaming performance. For both CHD and YD we only
need one incoming frame from the frame grabber to extract
the color histogram and average per-block luminance, and
than calculate differences between those features from
previous frame. After that we operate only on the array of
feature vectors of the window size 2xk +1 for the cut detection
phase. Thus we managed to minimize the memory operations.

Although the explained algorithm proved itself as the most
reliable among other algorithms, some improvements are
possible. Usage of every frame in detection can be avoided by
utilizing the temporal characteristics of video. Namely, we
assume that two scene changes aren't possible within some
time period of ts, where 0.5 seconds covers over 99% of
possible video content for different nature. As changes are
noticeable mainly in the luminance, we will use luminance
difference (YD) over kxk blocks for two frames sampled at ts,
as described earlier in this section. For the temporal
characteric we use sampling time ts of 0.5seconds, where we
are sure that double scene change won't occur. When
noticeable change above fixed threshold occurs, we treat such

changes either a as a cut or as a high motion. In order to
reduce motion, we use higher sampling resolution and
calculate YD over higher block number. When significant
change is found we declare a cut.

Modified algorithm for cut detection can be described by
using the following steps:

1. Decode video frames sampled at temporal resolution of ts.
Use ffmpeg video library for frame decoding.

2. Calculate YD between two time sampled frames, by
using the sum of absolute differences over chosen block size.
If this difference doesn't cross the defined «critical» threshold
repeat previous steps, if it is not the case:

3. Start with frame by frame decoding from the previously
sampled frame and apply the improved base algorithm,
described on the beggining of this chapter.

IV. RESULTS AND ANALYSES

For the video sequences »News« luminance difference (YD)
between successive frames is tested, for the whole frame as
well as for blocks of size kxk. First, for illustrational purposes,
Fig. 3 depicts results of hard cut scene detection for the video
sequence »News«, through alongside view of YD feature with
time sampling of ts=0.5 seconds. It can be noticed how
algorithm with higher time sampling enables to find periods in
a video sequence (frame groups) for which we can say that
they don't have cuts.

Fig. 3. Cut detection for the video sequence „News“ based on YD for the

whole frame, with time sampling ts=0.5s,
Further, Fig. 4. presents YD with frame time sampling of

the video's frame rate (25fps), for the whole frame and for the
8x8 blocks within frame. Figure 4.a shows YD plot which is
the supporting feature for reliable cut detection where this plot
peaks. The result on Figure 4.b, where frame luminace
difference is formed by block division, illustrates
improvement of the algorithm in increasing reliability of cut
detection and lowering the possibility of detecting the motion
on the scene as a cut. Comparing the plots in Fig. 4, it can be
seen that cuts are more noticeble in the when frame divided
into blocks, while values of YD in case frames representing
motion are less than YD based on whole frame. As an
illustration, in Table 1 are presented results on YD versus
number of blocks that frame divided into, for characteristic
frames in the video sequence „News“. It can be noticed that in
the case of whole frame values YD of some cut frames are
less than other representing motion. However, dividing frames
into blocks provides possibility of establishing of unique
threshold and avoiding false cut detection.

577

a)

b)

Fig. 4. Cut detection for the video sequence „News“ based on YD for the
whole frame, a) for the whole frame, b) for the frame blocks 8x8,

TABLE 1. YD VERSUS NUMBER OF BLOCKS FOR THE SEQUENCE „NEWS“

Frame Type
Number of blocks

1 2 4 8
30 Cut 36.38 19.95 33.81 39.03
70 Motion 15.27 2.24 4.15 9.36

142 Cut 68.89 61.09 61.09 61.25
252 Cut 5.76 37.22 38.58 40.26
282 Motion 4.39 0.25 0.39 0.58
398 Cut 16.05 13.33 18.40 26.11
460 Motion 6.73 0.91 3.55 4.49
548 Cut 16.05 48.41 51.40 64.37
641 Cut 16.05 53.68 55.79 59.37
656 Motion 9.86 1.42 2.29 2.94
705 Motion 8.38 1.53 5.02 7.41
769 Cut 16.05 53.55 53.55 53.87

When complete frame is in the memory, total processing
time depends on complexity of the algorithm for extracting
features from each frame (CHD and YD at the same pass over
frame) which is in our case O(NxM), where NxM is frame
size. Cut detection in the feature space is with uncomparably
smaller complexity to the feature extraction. In the terms of
real time processing with frame grabbing we are limited to
performance of frame grabber (in our case ffmpeg as software
implementation) that also depends on installed hardware.

The speed of described algorithm depends mostly from the
frame resolution of the video file. For the sequence of
different resolution, in the Fig. 5. average execution time for
clip in length of 200s at 25fps is presented. About one third of
total time of algorithm execution was spent for frame
decoding from ffmpeg library. Testing was performed on
comodity PC configuration Intel P4 2 GHz with 2GB RAM.

It can be seen that for frame resolutions of double CIF we
have real-time performance, while for full DVD resolution of
720x576 we are two times slower than real-time. If we can
consider frame decoding as a significant time loss, our
performance is near real-time.

0

50

100

150

200

250

300

350

400

450

QCIF CIF DCIF DVD

frame size

tim
e(

s)

Fig. 5. Average execution time for clip in length of 200s at 25fps

V. CONCLUSIONS
Based on obtained results, the conventional algorithm for

scene cut detection by using differences in color histograms of
adjacent frames was strengthen with additional detection
criteria oriented at spatial and temporal characteristics of a
video signal, where the changes in mean luminance difference
are used to distinguish cuts from motion for the given scene
(to some extent). To increase the speed of algorithm, frame
extraction is performed on specific fixed time intervals and
afterward the mean block luminance change of adjacent
frames is used as a spatial criterion. For a characteristic
sequence, together with increased efficiency in processing, the
results with lowered false detection rate and higher detection
precision rate were attained. Also, speed of the calculation
algorithm is considered in terms of real-time performance.

REFERENCES
[1] R. Lienhart, "Reliable Transition Detection in Videos: A

Survey and Practitioner's Guide", International Journal of
Image and Graphics, vol. 1, no. 3, 2001.

[2] R. Lienhart, "Comparison of Automatic Shot Boudary
Detection Algorithms", Proceedings of Storage and Retrieval
for Still Image and Video Databases VII, SPIE vol. 3656-29,
January, 1999.

[3] I. Koprinska and S. Carrato, “Temporal video segmentation: A
survey”, Signal Processing: Image Communication, 2001.

[4] Timothy C. Hoad, Justin Zobel: Video Similarity Detection for
Digital Rights Management. ACSC 2003

[5] http://www.mathworks.com/matlabcentral/fileexchange/, Block
Matching Algorithms for Motion Estimation by Aroh Barjatya

[6] Ba Tu Truong, Chitra Dorai, Svetha Venkatesh, “New
Enhancements to Cut, Fade, and Dissolve Detection Processes
in Video Segmentation”, ACMM 2000.

[7] FFmpeg - http://sourceforge.net/projects/ffmpeg

[8] Borko Furht, Video Databases, book, 2003.

[9] A. Fouad, M. Bayoumi, M. Onsi, “Shot Transition Detection

with Minimal Decoding of MPEG Video Streams”, 2006.

578

