
 

Digital FIR Filter with Improved Selectivity 
Peter Apostolov1 

Abstract – This paper describes a theory and method for 
designing the finite impulse response (FIR) filters. The theory is 
based on the approximation of ideal low pass filter transfer 
function. An appropriate basis function that leads to obtaining 
FIR filters with improved selectivity has been developed. The 
method has been carried out using Remez’ algorithm and an 
optimal polynomial that approximates ideal low pass filter 
transfer function with high precision, has been obtained. 
Furthermore, an analysis of FIR filters’ parameters as well as 
comparison with those of Parks McClellan’s method has also 
been carried out. In addition, an example for linear phase filter 
design, along with calculation minimization and a result’s 
analysis, has also been presented. With the proposed method, 
FIR falters with better selectivity than those of Parks 
McClellan’s can be obtained. 
 

Keywords – FIR digital filters, Frequency response, 
Polynomial approximation. 
 

I. INTRODUCTION 

The digitalization of modern electronic equipment requires 
the use of filters with linear phase responses. The digital FIR 
filters have such properties. Their synthesis is accomplished 
by appropriate approximation of ideal low pass filter transfer 
function like this. 
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where 2t tfω π=  is filter’s normalized angular transition 
frequency. The most popular methods for synthesis are by 
using the window functions: Rectangular, Hamming, Kaiser 
[3], Hausdorff [1] etc. The best selective properties have 
Parks-McClellan’s digital FIR filters [5]. They can be 
obtained by equiripple approximation (Fig.1) of ideal low pass 
filter transfer function with basis function cos x . This article 
presents a new method for FIR filter design, which has better 
selectivity than Parks-McClellan’s. 

II. BACKGROUND 

The method’s theoretical base is the Alternation Theorem: 
 if a function ( )f x  is defined and continuous in closed 

definition area, it can be approximated by trigonometric 
polynomial ( )mP x  by power m, with basis function cos x ; 

 the polynomial is the unique and best approximation, if 
the error function ( ) ( ) ( )mw x f x P x= −  has at least 2m +  
extremes in the definition area; 
 all extremes are alternative and their modules are equal 

to positive number ε . 
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Fig.1. Parks-McClellan’s approximation, m=18, 0.1ε =  

The method’s idea is an approximation with polynomial, 
which posses the following properties: 
 even power m; 
 accordance with Alternation Theorem; 
 polynomial’s oscillations are getting dense around 

transition  frequency tf . 
Compressing of oscillations is obtained, when the argument 

of basis function is “modulated” as shown 
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where β  is a parameter, which changes the power of 

function’s oscillations compressing, 2n samplω ω ω=  is 

normalized frequency, [ ]0, 2samplω ω∈  is current frequency 

and samplω  is sampling frequency. 
On Fig. 2 the function’s graph for 10m = , for parameter’s 

values 8β =  and 15β =  is shown. 
The approximation’s polynomial is accomplished by 

Remez’ algorithm. It comprises iteration computing of system 
of 2m +  linear equations. The obtained 2m +  solutions are 
the polynomial’s coefficients and the approximation errorε . 
The polynomial is obtained as follows 
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On Fig.3 an approximation with the polynomial for 4m = , 
10β =  and 0.1ε =  is shown 
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Fig.2. Basis function, with argument’s modulation, 10m =  
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Fig.3. Approximation by offered method 

On Fig.4 an approximation by offered method and Parks-
McClellan’s is shown. From the comparison can be seen, that 
with the offered method (by equal values of ε ) the 
approximation is made by polynomial of less power. 
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Fig.4. Approximations’ comparison 

The digital filter’s coefficients are derived from the 
polynomial’s coefficients in the following sequence 

 1 12 2
1, ,..., , , ,..., ,

2 2 2 2 2 2
m m m m

n

b b b bb b
h b+ += , (4) 

where 2 1n m= +  is the filter’s length. The filter’s transfer 
function is like this: 
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III. FILTER’S IMPLEMENTATION 

The implementation will be illustrated with an example for 
FIR filter design. Filter’s specification: power of the 
polynomial 4m =  (filter length 9n = ); transition frequency 

600tf = Hz; transition band 60tfΔ = Hz, sampling frequency 

8000samplf = Hz; parameter 131β = . After Remez’ algorithm 
approximation, an optimal polynomial has been obtained with 
coefficients: 1 0.5b = ; 2 0.5655b = ; 3 0b = ; 4 0.0656b = − ; 

5 0b =  and approximation error 0.0001ε = . 
The realization is done using a method, known as 

“frequency sampling filter” [2], [4]. It is based on FFT in 2N  
discretes, where N is an integer positive number.  A value of 

10N =  is set, i.e. 1024-FFT will be chosen. The following 
procedure must be carried out: 

1. The minimal frequency step is calculated 

 7.8125
2
sampl

N

f
df = =  (6) 

A massive, containing 512 frequencies is created 
 : : 2j samplf df df f= ; 1 2 2Nj = ÷ . (7) 
2. A 512 values of polynomial are calculated 
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jθ  is so called filter’s “mask” . It is shown on Fig.5. 
3. After analog to digital conversion, the signal is applied to 

2N  buffer. 
4. A 1024-FFT is being performed. As a result 2N  complex 

frequencies iF  are obtained. 
5. The first 512 frequencies are multiplied by the filter’s 

mask jθ , which corresponds to convolution in frequency 

domain. A spectrum with  2 2 512N =  frequencies is 
obtained. 

 j j jS F θ= ⊗ ; 1 2 2Nj = ÷ . (10) 
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Fig.5. Filter’s mask 

6. The spectrum is added with 2 2 512N =  zeros 

 [ , (1, 512)]i jS S zeros= ; 1 2 2Nj = ÷ ; 1 2Ni = ÷ . (11) 

7. A 1024-IFFT is performed. As a result 2N  complex 
numbers are obtained, which real parts are the filtered signal. 

8. The next 2N  discretes are taken from the input buffer 
and the procedure returns to p.4. 

On Fig.6 the filter’s structure is shown. 
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Fig.6. Filter’s structure 
The filter’s pass-band ripple is 
 ( )20 lg 1 8.6155e-4DА ε= − = − dB, (12) 

and stop band attenuation 
 10 lg 40.0356DS ε= = − dB. (13) 
On Fig.7 the filter’s magnitude response is shown. 
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Fig.7. Magnitude response 

The use of FFT leads to decreasing the filter’s frequencies 
responses recreation accuracy. This inaccuracy comprises 
increasing of the pass-band ripple. The obtained value of 

0.01627DА = − dB is reasonable from a practical point of 
view. 

On Fig.8 the impulse response of the designed filter is 
shown. From the figure it can be seen, that the filter has 
symmetrical impulse response. This is a response of linear-
phase filter. 
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Fig.8. Impulse Response 

On the next figure the phase response is shown. 
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Fig.9. Phase response 

The filter’s group delay time (GDT) is the product of the 
phase response. Due to the phase response linearity the, GDT 
is constant – Fig.10. 
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Fig.10. GDT 

The GDT value corresponds to the digital processing of the 
input buffer numbers and can be defined by the relation  

 12NGDT −=  samples/sec. (14) 

IV. CALCULATION’S MINIMIZATION 

From the above mentioned it can be seen, that the main 
calculations are the convolution (10). To get one input buffer, 
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the 2 2 512N =  multiplications of complex with real numbers 

must be done, which are 2 1024N =  multiplications. From 
Fig.5 is seen, that the filter’s mask contains 512 numbers, the 
greatest part of them, are equal either to 1 ε−  (in the pass-
band), or to ε  (in the stop-band). That are numbers very close 
to 1 or 0, because 0.0001ε = . The calculations can be 
significantly reduced if the filter’s mask is divided in three 
zones: 

1. pass-band – the numbers are set to 1; 
2. transition band – the calculated mask values are 

accepted; 
3. stop-band – the numbers are set to 0. 
In our case it is appropriate for transition band that 25 

numbers should be accepted, which have indexes from 66 to 
90 (Fig.11) 
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Fig.11. Filter’s mask – transition band 

So the filter’s mask will consist of 65 ones, 25 numbers 
from the transition band and 422 zeroes. The first 65 complex 
frequencies from the input buffer go freely to the output (as if 
are multiplied by 1). The next 25 are multiplied with the 
numbers from the transition band, thereafter 422+512=934 
zeroes are added without any calculation. So the calculations 
are reduced to 25 multiplications of complex with real number 
that means 50 multiplications. 
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Fig.12. Magnitude response with reducing of the calculations 

On Fig12 a magnitude response of a filter, realized by the 
offered method, is shown. It is seen, that the reducing of the 
calculations more than 20 times doesn’t lead to Gibbs’ effect 
and the filter remains optimal. From the comparison with 

Fig.7 is seen, that the magnitude response keeps its parameters 
in the pass-band and transition-band, the attenuation in the 
stop-band increases. That means the calculation’s 
minimization can be applied successfully in practice. 
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Fig.13. Parks-McClellan - Magnitude response, n=615 

On Fig.13 a magnitude response of Parks-McClellan’s 
filter, which has a Fig.7 fitter specification, is shown. It is 
seen, that the filter’s length n=615 is over than 68 times 
higher. 

V. CONCLUSION 

Offered method’s advantages are due to the following two 
circumstances: 
 transfer function’s coefficients are obtained from optimal 

approximation (Fig.3); 
 every addend of transfer function (5) is multiplied with 

factor ( ) ( )[ ]tanh 2 1
2 n

π
ϕ ω βω β= − + , which is the phase 

response of the resonance circuit, whereas for the other FIR 
filters it is linear function ( ) ( )exp jϕ ω ω= − . 

The filters’ selectivity depends on parameter β , which can 
grow unlimitedly. The filters don’t change their length, when 
the ratio between transition and sampling frequency changes. 
They have linear phase response. They can be realized with 
minimal calculations. 
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