

 Algorithm for Image Recognition on FPGA
Rosen Spirov1

Abstract In this paper the author is presented the hardware
application of the Haar algorithm for pattern recognition with
the FPGA. The project is used the Altera DE2 board to
implement a simple hardware design. For describing its behavior
use the VHDL language and the Altera’s Quartus tools to
synthesize and to program the FPGA device

Keywords – Image processing, Pattern recognition, Haar
wavelet, FPGA, VHDL

I. INTRODUCTION

In this paper is presented basic hardware architecture, using
wavelet Haar coefficients for face recognition.The kernel module is
the parallel implementation of processing pixel data. The proposed
model is implemented using VHDL and simulated and synthesized
into an FPGA. To explain how different parts of the algorithm are
tailored must to take advantage of FPGA architecture.

II. Using Wavelet Transforms

The image recognition algorithm consist of several fairly
independent stages:

- Wavelet-transform image,
- Filtering in the wavelet domain;
- Fining and Locating the area containing the image;
- Splitting the image into segments and contrasting

fragments;
- Recognition of the fragment with pre-trained artificial

neural network.
This document is presented basic hardware architecture,

using wavelet Haar coefficients for face recognition. Kernel
module is the parallel implementation of processing pixel
data. The proposed model is implemented using VHDL and
simulated and synthesized into an FPGA. To explain how
different parts of the algorithm are tailored must to take
advantage of FPGA architecture. The application of wavelet -
transformation and subsequent filtration allows to recognize
this key images with little contrast, such as numbers of
vehicles, persons and background, distinguish underwater
objects [1]. The problem with recognition of objects in
background, that are two-dimensional objects, looks much
more complicated than filtering one-dimensional spectra. So,
first of all, it is necessary to reduce the dimension of the
object, fixing the scale of the wavelet transform in the value
determined by the size of the object recognition - the numbers

on the plate, incidence of recurrence of black and white in this
area and extent of the chosen wavelet. A good result is given
symmetric wavelet, which in this case are koyflets [2, 3].
The koyflets is a special version of the fast wavelet-
transformations (DWT).
Any function f in L2(R) can be expanded at some given. Level
of resolution j,k in a number of species [3] is given in Eq.1:

jk
kjnj

jkkjn
k

kjn dSf ψϕ ∑∑
≥

+=
3

,
,, .. (1)

The wavelets sj,k и dj,k can be calculated by the Eq.2 and Eq.3:

() dxxxfs kjkj ⋅= ∫ ,,)(ϕ (2)

() dxxxfd kjkj ⋅= ∫ ,,)(ψ (3)

Once you select a particular wavelet, can be carried out

wavelet transform of a signal f (x), defined as orthonormal
wavelet basis. Any function fL2(R) is completely characterized
by its wavelet decomposition coefficients on this basis. The
function f (x) can be viewed on any n-th level resolution jn.
Then the separation between is average values at this level
and fluctuations around them looks like [2, 3] in Eq.4:

)()()(,,,, xdxSxf kjn
k

kjn
jnjk

kjnkjn ψϕ ∑∑∑
∞

−∞=

∞

=

∞

−∞=

+= (4)

On an infinite interval, the first sum can be omitted, and the

result is a "pure" wavelet decomposition. Coefficients sj,k and
dj,k contains information about the composition of the signal
at different scales. They can be calculated directly using
formula (2), (3). However, this algorithm is not practical,
since the calculation will need to spend a lot of (N2)
operations, where N denotes the number of available values of
the function. The author describe a much faster algorithm. The
Multistage analysis is leads naturally to a hierarchical and fast
scheme for calculating the wavelet coefficients of a given
function [4]. In general, the iterative formula fast wavelet
transform have the form [3,5] is given in Eq.5, Eq.6, Eq.7:

mkjm
m

kj shs ++ ∑= 2,,1 (5)

mkjm
m

kj sgd ++ ∑= 2,,1 (6)

() dxkxxfs kj ⋅−= ∫ ϕ)(, (7)

1Rosen P. Spirov is with the Faculty of Electronics, Technical
University-Varna,
1,Studentska str . 9010 Varna , Bulgaria, E-mail: rosexel@abv.bg

591

These equations provide fast algorithms (the so-called
pyramid algorithms) computation of wavelet coefficients,
since they require now only O(N) operations for its
completion.The simplest solution is the direct use values of
f(k) of the available data set in the form of the coefficients sj,k
and the application of fast wavelet transform using equations
(6), (7). This is a safe procedure, since the pyramidal
аlgorithm provides a complete reconstruction of the signal,
and coefficients, in fact, represent the local average values,
that was weighted by scaling function [6].

II. REALIZATION

The project includes the creation of parallel models
respectively Matlab environment and secondly in Qartus
tools. On the figure 1 is shown the Altera DE2 board.

Fig 1. The Altera DE2 board

It consists of an Altera Cyclone II FPGA connected to a
variety of peripherals including 512K of SRAM, 4MB of
Flash, 8MB of SDRAM, VGA output Ethernet, audio input
and output, and USB ports. There are three USB connectors
on the top of the board. Parallel architecture of Haar Wavelet (8-
inputs) are given in Fig 2:

 Fig 2. Parallel architecture of Haar Wavelet (8-inputs).

The Simulation Result showing data at various stages at each
clock edge is shown in Fig 3.

Fig. 3. Simulation Result showing data at various stages at each
clock edge
The simulation result showing the parallel nature of the
architecture are given in Fig 4:

Fig 4. Simulation Result showing the parallel nature of the
architecture.

592

This thesis was focused on design methodology for automatic
learning of the optimum transformation of the input space
based on Haar wavelet structure. Although the described
architecture implements only the Haar wavelet, it can be used
as a core subsystem in a preprocessing system which
iteratively uses Haar wavelet, selects corresponding
coefficients and reapply the Haar wavelet transform. Full
realization of the presented concept in FPGA architecture was
a subject of another thesis [5]. In abbreviated form is shown in
Annex A and Annex B to realize the software Haar wavelet
for image recognition and simulation in Matlab of the Quartus
VHDL. Source source of Quartus is programming of FPGA
on Altera kit. The resources of the FPGA used:

Number of CLBs 120/400 (30%)
Number of bonded IOBs 129/129 (100%)
Number of global buffers 1/12 (8%)
Total equivalent gate count 3948
Minimum period 25.405 ns
Maximum frequency 39.362 MHz
Maximum net delay 10.365 ns
Avrg. Con. Delay 3.494 ns
Avrg. Con. Delay on crt.nets 0.000 ns
Average Clock Skew 0.248 ns
The Max. Pin Delay 10.365 ns
Avrg. Con.Delay on the 10 Worst Nets 9.184 ns

III. SOFTWARE IN AN ABBREVIATED FORM

Annex A. Program in MATLAB: haar.m

%plotting the interpretation of haar transform
numCoeff=8;
% determine levels????
levls=round(log10(numCoeff)/log10(2));
x=1:numCoeff;
rows=numCoeff;
coeffMatrix=diag(ones(1,numCoeff));
coeffD=coeffMatrix;
for i=1:levls
coeffC=[];
begn=1;
while begn<numCoeff
oddr=(begn:2:begn+rows-1);
evnr=(begn+1:2:begn+rows-1);
coeffA=[];
coeffB=[];
for j=1:length(oddr)
coeffA(j,:)=(coeffMatrix(oddr(j),:) + coeffMatrix(evnr(j),:)
)/2;
coeffB(j,:)=coeffMatrix(oddr(j),:) - coeffMatrix(evnr(j),:);
end;
coeffC=[coeffC;coeffA;coeffB];
………………………

Annex B. Program in VHDL: Haar.vhd
LIBRARY ieee;
USE ieee.ALL;
ENTITY haar IS

PORT (
clock : IN bit;
-- Inputs
in1 : IN integer RANGE -127 TO 127;
……………
in8 : IN integer RANGE -127 TO 127;
--Outputs
out1 : OUT integer RANGE -127 TO 127;
…………..
out8 : OUT integer RANGE -127 TO 127
);
END haar;
ARCHITECTURE haar OF haar IS
COMPONENT bufgs
PORT (
i : IN bit;
o : OUT bit
);
END COMPONENT;
COMPONENT regPORT (
input : IN integer RANGE -127 TO 127;
clk : IN bit;
output : OUT integer RANGE -127 TO 127
);
END COMPONENT;
COMPONENT adddiv
PORT (
a : IN integer RANGE -127 TO 127;
b : IN integer RANGE -127 TO 127;
clk : IN bit;
c : OUT integer RANGE -127 TO 127
);
END COMPONENT;
COMPONENT difference
PORT (
a : IN integer RANGE -127 TO 127;
b : IN integer RANGE -127 TO 127;
clk : IN bit;
c : OUT integer RANGE -127 TO 127
);
END COMPONENT;
SIGNAL out_r1, out_r2, out_r3, out_r4, out_r5, out_r6,

out_r7,
out_r8 : integer RANGE -127 TO 127;
SIGNAL out_a1, out_a2, out_a3, out_a4, out_a5, out_a6,

out_a7,
out_a8 : integer RANGE -127 TO 127;
SIGNAL out_s1, out_s2, out_s3, out_s4, out_s5, out_s6,

out_s7,
out_s8 : integer RANGE -127 TO 127;
SIGNAL clk : bit;
BEGIN
xbufgs: bufgs
PORT MAP (
clock,
clk
);
-- Input to Register here
r1: reg

593

PORT MAP (in1, clk, out_r1);
…………………..
PORT MAP (out_a7, out_a8, clk, out6);
a12: adddiv
PORT MAP (out_s7, out_s8, clk, out7);
s12: difference
PORT MAP (out_s7, out_s8, clk, out8);
END haar;

The performance of this implementation can be attributed to
the parallel hardware blocks used in performing the necessary
calculations for the algorithm [7]. Further to this, the design
can be scaled for larger databases by simply adding more
processing elements in parallel The above hardware design
was implemented on an Altera Quartus II board
(clocked at 100 MHz) and was able to perform face
recognition on a database of 10 faces
in 3.88 milliseconds. A total of 7,820 logic elements were
used, 2,348 of which were flip-flops. Again, performance can
be attributed to the highly parallel nature of the hardware
design and the composite algorithm used FPGA. Original
image after wavelet-transform at Haar basis shown on Fig 5.
and Fig 6.

Fig 5. Original image after wavelet-transform by rows at
Haar basis.

Fig 6. Original image after wavelet-transform in lines Haar
basis

The experiment result shows that the whole operation time is
about 60 clock cycle, which about 0.6us at 100MHz clock
pulse, so the operation speed can be up to 1.5MHz. The whole
design requires 2592 ALUTs and 241 registers (occupancy of
resources is about 21%). The advantage of parallel processing
in FPGA leads to a substantial increase in performance and
accuracy in processing, extraction of the contour information
than in the simulation in Matlab.

IV. Conclusion

So it provides a practical method for using FPGA to realize
face recognition. The main contribution of our work is design
and implementation of a physically feasible hardware system
to accelerate the processing speed of the operations required
for real time face recognition. The FPGA implementation and
simulation results are given in this paper.. The proposed
models are implemented using VHDL, and simulated and
synthesized into a single FPGA. Therefore, optimization of
the hardware source usage was the primary aim of this study.
The research results show that the system works with high
speed while consuming small amount of logic resources in
comparison with original subspace feature extraction process
methods. It demonstrates that this technology can produce
effective and powerful applications for face recognition
systems.

REFERENCES

[1] P. Belhumeur, J. Hespanha, D. Kriegman. Eigenfaces vs linear
projection. IEEE Transaction on Pattern Analysis and Machine
Intelligence, 1997, 19(7): 711-720.

[2] H.K. Ekenel, B. Sankur. Multiresolution face
recognition.Image and Vision Computing, 2005, 23(5): 469-
477. fisherfaces: Recognition using class specific

[3] M. Turk and A. Pentland. Eigenfaces for recognition. J. of
Cognitive Neuroscience, 1991, 3(1).

[4] Ahn J.H., Choi S., Oh J.H. A new way of PCA: Integrated-
squared-error and EM algorithms. In: Proc. IEEE Int’l Conf.
Acoustics, Speech and Signal Processing, Montreal, Canada,
2004.M. S. Sadri and et al. An FPGA based fast face detector
Proc. of GSPX Conference, 2004: 586-591

[5] .Pellerin D. and S. Thibault. Practical FPGA programming in

C. Prentice Hall PTR, ISBN: 0-13-154318-0.
[6] Wang Y., Osterman J. and Zhang Y. Video Processing and

Communications. C.Prentice Hall PTR, ISBN: 0-13-017547-1.
[7] Parhi K. VLSI Digital Signal Processing System Design and

Implementation Wiley Inter Since 0471241865.

594

