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Abstract  In this paper the author is presented the hardware 
application of the Haar algorithm for pattern recognition with 
the FPGA. The project is used the Altera DE2 board to 
implement a simple hardware design. For describing its behavior 
use the VHDL language and the Altera’s Quartus tools to 
synthesize and to program the FPGA device  
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I. INTRODUCTION 

In this paper is presented basic hardware architecture, using 
wavelet Haar coefficients for face recognition.The kernel module is 
the parallel implementation of processing pixel data. The proposed 
model is implemented using VHDL and simulated and synthesized 
into an FPGA. To explain how different parts of the algorithm are 
tailored must to take advantage of FPGA architecture.  
 

II. Using Wavelet Transforms 
 
The image recognition algorithm consist of several fairly 
independent stages: 

- Wavelet-transform image, 
- Filtering in the wavelet domain; 
- Fining and Locating the area containing the image; 
- Splitting the image into segments and contrasting 

fragments; 
- Recognition of the fragment with pre-trained artificial 

neural network. 
This document is presented basic hardware architecture, 

using wavelet Haar coefficients for face recognition. Kernel 
module is the parallel implementation of processing pixel 
data. The proposed model is implemented using VHDL and 
simulated and synthesized into an FPGA. To explain how 
different parts of the algorithm are tailored must to take 
advantage of FPGA architecture. The application of wavelet - 
transformation and subsequent filtration allows to recognize 
this key images with little contrast, such as numbers of 
vehicles, persons and background, distinguish underwater 
objects [1]. The problem with recognition of objects in 
background, that are two-dimensional objects, looks much 
more complicated than filtering one-dimensional spectra. So, 
first of all, it is necessary to reduce the dimension of the 
object, fixing the scale of the wavelet transform in the value 
determined by the size of the object recognition - the numbers 

on the plate, incidence of recurrence of black and white in this 
area and extent of the chosen wavelet. A good result is given 
symmetric wavelet, which in this case are koyflets [2, 3].  
The koyflets is a special version of the fast wavelet-
transformations (DWT).  
Any function f in L2(R) can be expanded at some given. Level 
of resolution j,k  in a number of species  [3] is given in Eq.1: 
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The wavelets sj,k и dj,k  can be calculated by the Eq.2 and Eq.3: 
 

( ) dxxxfs kjkj ⋅= ∫ ,, )( ϕ                                (2) 
 

( ) dxxxfd kjkj ⋅= ∫ ,, )( ψ                               (3) 
 
Once you select a particular wavelet, can be carried out 

wavelet transform of a signal f (x), defined as orthonormal 
wavelet basis. Any function fL2(R) is completely characterized 
by its wavelet decomposition coefficients on this basis. The 
function f (x) can be viewed on any n-th level resolution jn. 
Then the separation between is average values at this level 
and fluctuations around them looks like  [2, 3] in Eq.4: 
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On an infinite interval, the first sum can be omitted, and the 

result is a "pure" wavelet decomposition. Coefficients sj,k and 
dj,k   contains information about the composition of the signal 
at different scales. They can be calculated directly using 
formula (2), (3). However, this algorithm is not practical, 
since the calculation will need to spend a lot of (N2)  
operations, where N denotes the number of available values of 
the function. The author describe a much faster algorithm. The 
Multistage analysis is leads naturally to a hierarchical and fast 
scheme for calculating the wavelet coefficients of a given 
function [4]. In general, the iterative formula fast wavelet 
transform have the form [3,5] is given in Eq.5, Eq.6, Eq.7: 
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These equations provide fast algorithms (the so-called 
pyramid algorithms) computation of wavelet coefficients, 
since they require now only O(N) operations for its 
completion.The simplest solution is the direct use values of  
f(k) of the available data set in the form of the coefficients sj,k   
and the application of fast wavelet transform using equations 
(6), (7). This is a safe procedure, since the pyramidal 
аlgorithm provides a complete reconstruction of the signal, 
and coefficients, in fact, represent the local average values, 
that was weighted by scaling function [6]. 

II. REALIZATION 

The project includes the creation of parallel models 
respectively Matlab environment and secondly in Qartus 
tools. On the figure 1 is shown the Altera DE2 board.  

 
 
 
 
 
 
 
 
 
 
 
 
Fig 1. The Altera DE2 board 
 

It consists of an Altera Cyclone II FPGA connected to a 
variety of peripherals including 512K of SRAM, 4MB of 
Flash, 8MB of SDRAM, VGA output  Ethernet, audio input 
and output, and USB ports. There are three USB connectors 
on the top of the board. Parallel architecture of Haar Wavelet (8-
inputs) are given in Fig 2:  

 

 
        
  Fig 2. Parallel architecture of Haar Wavelet (8-inputs). 
 
The Simulation Result showing data at various stages at each 
clock edge is shown in Fig 3. 

 
 

Fig. 3. Simulation Result showing data at various stages at each 
clock edge 
The simulation result showing the parallel nature of the 
architecture are given in Fig 4: 
 

 
 
Fig 4. Simulation Result showing the parallel nature of the 
architecture.  
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This thesis was focused on design methodology for automatic 
learning of the optimum transformation of the input space 
based on Haar wavelet structure. Although the described 
architecture implements only the Haar wavelet, it can be used 
as a core subsystem in a preprocessing system which 
iteratively uses Haar wavelet, selects corresponding 
coefficients and reapply the Haar wavelet transform. Full 
realization of the presented concept in FPGA architecture was 
a subject of another thesis [5]. In abbreviated form is shown in 
Annex A and Annex B to realize the software Haar wavelet 
for image recognition and simulation in Matlab of the Quartus 
VHDL. Source source of Quartus is programming of FPGA 
on Altera kit. The resources of the FPGA used: 
 
Number of CLBs                                                120/400 (30%) 
Number of bonded IOBs                                  129/129 (100%) 
Number of global buffers                                           1/12 (8%) 
Total equivalent gate count                                                3948 
Minimum period                                                         25.405 ns 
Maximum frequency                                              39.362 MHz 
Maximum net delay                                                    10.365 ns 
Avrg. Con. Delay                                                          3.494 ns 
Avrg. Con. Delay on crt.nets                                        0.000 ns 
Average Clock Skew                                                    0.248 ns 
The Max. Pin Delay                                                    10.365 ns 
Avrg. Con.Delay on the 10 Worst Nets                        9.184 ns 
 
 
III. SOFTWARE IN AN ABBREVIATED FORM 

 
Annex A. Program in MATLAB: haar.m 

%plotting the interpretation of haar transform 
numCoeff=8; 
% determine levels???? 
levls=round(log10(numCoeff)/log10(2)); 
x=1:numCoeff; 
rows=numCoeff; 
coeffMatrix=diag(ones(1,numCoeff)); 
coeffD=coeffMatrix; 
for i=1:levls 
coeffC=[]; 
begn=1; 
while begn<numCoeff 
oddr=(begn:2:begn+rows-1); 
evnr=(begn+1:2:begn+rows-1); 
coeffA=[]; 
coeffB=[]; 
for j=1:length(oddr) 
coeffA(j,:)=( coeffMatrix(oddr(j),:) + coeffMatrix(evnr(j),:) 
)/2; 
coeffB(j,:)=coeffMatrix(oddr(j),:) - coeffMatrix(evnr(j),:); 
end; 
coeffC=[coeffC;coeffA;coeffB]; 
……………………… 
 

Annex B. Program in VHDL: Haar.vhd 
LIBRARY ieee; 
USE ieee.ALL; 
ENTITY haar IS 

PORT ( 
clock : IN bit; 
-- Inputs 
in1 : IN integer RANGE -127 TO 127; 
…………… 
in8 : IN integer RANGE -127 TO 127; 
--Outputs 
out1 : OUT integer RANGE -127 TO 127; 
………….. 
out8 : OUT integer RANGE -127 TO 127 
); 
END haar; 
ARCHITECTURE haar OF haar IS 
COMPONENT bufgs 
PORT ( 
i : IN bit; 
o : OUT bit 
); 
END COMPONENT; 
COMPONENT regPORT ( 
input : IN integer RANGE -127 TO 127; 
clk : IN bit; 
output : OUT integer RANGE -127 TO 127 
); 
END COMPONENT; 
COMPONENT adddiv 
PORT ( 
a : IN integer RANGE -127 TO 127; 
b : IN integer RANGE -127 TO 127; 
clk : IN bit; 
c : OUT integer RANGE -127 TO 127 
); 
END COMPONENT; 
COMPONENT difference 
PORT ( 
a : IN integer RANGE -127 TO 127; 
b : IN integer RANGE -127 TO 127; 
clk : IN bit; 
c : OUT integer RANGE -127 TO 127 
); 
END COMPONENT; 
SIGNAL out_r1, out_r2, out_r3, out_r4, out_r5, out_r6, 

out_r7, 
out_r8 : integer RANGE -127 TO 127; 
SIGNAL out_a1, out_a2, out_a3, out_a4, out_a5, out_a6, 

out_a7, 
out_a8 : integer RANGE -127 TO 127; 
SIGNAL out_s1, out_s2, out_s3, out_s4, out_s5, out_s6, 

out_s7, 
out_s8 : integer RANGE -127 TO 127; 
SIGNAL clk : bit; 
BEGIN 
xbufgs: bufgs 
PORT MAP ( 
clock, 
clk 
); 
-- Input to Register here 
r1: reg 
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PORT MAP ( in1, clk, out_r1 ); 
………………….. 
PORT MAP ( out_a7, out_a8, clk, out6 ); 
a12: adddiv 
PORT MAP ( out_s7, out_s8, clk, out7 ); 
s12: difference 
PORT MAP ( out_s7, out_s8, clk, out8 ); 
END haar; 

 
The performance of this implementation can be attributed to 
the parallel hardware blocks used in performing the necessary 
calculations for the algorithm [7]. Further to this, the design 
can be scaled for larger databases by simply adding more 
processing elements in parallel The above hardware design 
was implemented on an Altera Quartus II board 
(clocked at 100 MHz) and was able to perform face 
recognition on a database of 10 faces 
in 3.88 milliseconds. A total of 7,820 logic elements were 
used, 2,348 of which were flip-flops. Again, performance can 
be attributed to the highly parallel nature of the hardware 
design and the composite algorithm used FPGA. Original 
image after wavelet-transform at Haar basis shown on Fig 5. 
and Fig 6. 

 

 
 

Fig 5. Original image after wavelet-transform by rows at 
Haar basis. 

 
 

 
 

Fig 6. Original image after wavelet-transform in lines Haar 
basis 

 
The experiment result shows that the whole operation time is 
about 60 clock cycle, which about 0.6us at 100MHz clock 
pulse, so the operation speed can be up to 1.5MHz. The whole 
design requires 2592 ALUTs and 241 registers (occupancy of 
resources is about 21%). The advantage of parallel processing 
in FPGA leads to a substantial increase in performance and 
accuracy in processing, extraction of the contour information 
than in the simulation in Matlab. 
 
 

IV. Conclusion 
 

So it provides a practical method for using FPGA to realize 
face recognition. The main contribution of our work is design 
and implementation of a physically feasible hardware system 
to accelerate the processing speed of the operations required 
for real time face recognition. The FPGA implementation and 
simulation results are given in this paper.. The proposed 
models are implemented using VHDL, and simulated and 
synthesized into a single FPGA. Therefore, optimization of 
the hardware source usage was the primary aim of this study. 
The research results show that the system works with high 
speed while consuming small amount of logic resources in 
comparison with original subspace feature extraction process 
methods. It demonstrates that this technology can produce 
effective and powerful applications for face recognition 
systems. 

REFERENCES 

[1] P. Belhumeur, J. Hespanha, D. Kriegman. Eigenfaces vs linear 
projection. IEEE Transaction on Pattern Analysis and Machine 
Intelligence, 1997, 19(7): 711-720. 

[2] H.K. Ekenel, B. Sankur. Multiresolution face 
recognition.Image and Vision Computing, 2005, 23(5): 469-
477. fisherfaces: Recognition using class specific  

[3] M. Turk and A. Pentland. Eigenfaces for recognition. J. of 
Cognitive Neuroscience, 1991, 3(1). 

[4] Ahn J.H., Choi S., Oh J.H. A new way of PCA: Integrated-
squared-error and EM algorithms. In: Proc. IEEE Int’l Conf. 
Acoustics, Speech and Signal Processing, Montreal, Canada, 
2004.M. S. Sadri and et al. An FPGA based fast face detector 
Proc. of GSPX Conference, 2004: 586-591 

[5] .Pellerin D. and S. Thibault. Practical FPGA programming in 

C. Prentice Hall PTR, ISBN: 0-13-154318-0.  
[6] Wang Y., Osterman J. and Zhang Y. Video Processing and 

Communications. C.Prentice Hall PTR, ISBN: 0-13-017547-1. 
[7] Parhi K. VLSI Digital Signal Processing System Design and 

Implementation Wiley Inter Since 0471241865. 
 

594


