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Abstract – This paper proposes a path control with input 
saturation for backward driving of a car-like mobile robot. The 
control law is constructed using high-gain design techniques and 
involves error coordinates and invariant properties with respect 
to the vehicle speed.  The stability of the closed-loop system is 
analyzed using Lyapunov stability theory. Simulation results 
illustrate the effectiveness of the proposed controller.  
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I. INTRODUCTION 

In this paper, we consider the path following problem for 
backward driving of a car-like mobile robot with input 
saturation. In recent years, significant advances have been 
made in designing feedback controllers for nonholonomic 
mobile robots. While there has been significant amount of 
work on controlling the motion of mobile robots without 
bound of the control inputs [1, 2, 3], there has been much less 
work on mobile robot motion control with input saturations 
[4].   

In this paper, we propose a path following controller with 
input saturation for a car-like mobile robot during backward 
driving.  The paper is organised as follows: In Section II, the 
kinematic model of the car-like mobile robot is presented and 
the control problem is formulated. In Section III, the control 
law is designed. Simulation results are presented in Section 
IV. Section V concludes the paper. 

II. PROBLEM FORMULATION 

A. Mobile Robot Kinematic Model 

A plan view of the mobile robot is given in Fig. 1. The 
mobile robot has three non-deformable wheels. The wheels 
are assumed to roll on a horizontal plane without slipping. The 
longitudinal base PS of the vehicle is denoted by l. To 
describe the position and orientation of the robot in the plane, 
we assign the following coordinate frames:  PxPyP located at 
the center of the rear wheel axle and stationary with respect to 
the robot body where the xP axis is along the longitudinal base 

of the robot, and an inertial coordinate frame Fxy in the plane 
of motion. The coordinates of a reference point P placed at the 
center of the rear robot axle, with respect to Fxy, are denoted 
by (xP, yP). The angle θ  is the orientation angle of the robot 
with respect to the frame Fxy. The angle α, is the front wheel 
steering angle.  The steering angle is measured with respect to 
the robot body. 

 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 1. A plan view of the car-like mobile robot 
 
If the rotation of the wheels with respect to their proper 

axes is ignored, the mobile robot configuration can be 
described by four generalized coordinates q = [xP,yP, θ, α ]T ∈ 
ℜ4. The kinematic model of the robot in the plane can be 
described by the following system of nonlinear differential 
equations 
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where vp is the velocity of point P. The front-wheel steering 

angle α is the control input of the system and is a subject of 
physical limitations

maxαα ≤ . 

B. Control Problem 

The path following geometry used in this paper is 
represented in Fig. 1. Consider a car-like mobile robot   
moving backward on a flat surface. We assume that the path 
C  is a straight line which for simplicity coincides with the Fx 
axis of the inertial frame Fxy. We assume that vP together with 
its derivative are bounded and also, that the following 
inequalities hold: 0 < vPmin ≤ |vP(t)| ≤ vPmax. In this case, using 
the parameterization (yP, θ) and given a path C, the path 
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following problem consists of finding a feedback control law 
for the system which consists of the second and third equation 
of (1) system with control  input α subject to physical 
limitations maxαα ≤ ,  such   that the state vector [yP, θ]T 

tends  to  [0, 0]T,  as t → ∞. 

III. FEEDBACK CONTROL DESIGN 

In this Section, we present a path following controller for 
backward driving of the robot given by the second and third 
equations of (1) with input saturation for the steering angle α. 
The control objective is to regulate the state vector [y, θ ]T to 
zero. Since vP(t) is assumed to be strictly negative (vP(t) = -| 
vP(t)| < 0), to obtain a time-invariant system, the 
differentiation with respect to time is replaced by 
differentiation with respect to s (ds = vPdt), where s is the real 
path length drown by the reference point P. In that way, we 
express the vehicle’s equations of motion in terms of s and 
denote the derivation with respect to s by “ ׳ ”.  Next, we 
proceed with the following change of input 
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In that way, the system can be written in the form 
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For the first equation of (3), the control  
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achieves local exponential stability of yP = 0.  For the (yP, 

θ) system (3), we propose the following feedback control 
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and sat(.) is a saturation function 
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The control (6) achieves semi-global stabilization of (3). 
The semi-global stabilization [5] means that for any compact 
neighborhood Γ of (yP, θ) = (0, 0), there exists k* such that for 
all k ≥ k*, the region of attraction contains Γ. Indeed, we 
introduce the following change of coordinates 

 
                                       ξθη −=  .                                  (8) 
 
The system (3) can be rewritten in the new coordinates as 
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For the system (9) we consider the following Lyapunov 

function  
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Using (9), for the derivative of (10), we obtain 
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Denoting 
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and using the fact that 
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we have  
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IV. SIMULATION RESULTS 

Simulation results using MATLAB were performed to 
illustrate the effectiveness of the proposed controller. A 
straight line reference path which coincides with the Fx axis 
of an inertial frame was chosen for the simulations. The 
longitudinal base of the robot was 1m, and velocity of the 
mobile robot was chosen to be 1m/s. The bound for the front 
wheel steering angle was |α| ≤  αmax = 0.785rad (45 deg). The 
controller gains were k = 1, a = 1.  Initial conditions was 
chosen to be yP(0) = 1.5m; θ(0) = -0.5rad, α(0) = 0rad. 
Evolution of the state coordinates [yP, θ]T with respect to the 

variable ∫=
t

P dvs
0

|| τ is depicted in Fig. 2. 
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Fig. 2. Evolution in time of the state coordinates (yP, θ)  

 
 
Evolution of the front wheel steering angle α is depicted in 

Fig. 3. 

0 1 2 3 4 5 6 7 8 9 10
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Steering angle "alfa"

t[s]

al
fa

[ra
d]

 
 
Fig. 3. Evolution in time of the front wheel steering angle α   
 
 The simulation results confirm the effectiveness of the 

proposed controller.  

V. CONCLUSION 

In this paper, a path control with input saturation for 
backward driving of a car-like mobile robot is proposed. The 
control law is constructed using high-gain design techniques 
and involves error coordinates and invariant properties with 
respect to the vehicle speed. The stability of the closed-loop 
system is analyzed using Lyapunov stability theory. 
Simulation results illustrate the effectiveness of the proposed 
controller. Our future work will consist in dynamic extension 
of the proposed controller in the presence of uncertainties in 
the model of the mobile robot.  
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