

Software Cost Estimation - a Practical Approach
Violeta T. Bozhikova1

Abstract – Software cost estimation is considered as one of the
most challenging tasks in software project management. The
process of software estimation includes estimating the size of the
future software product, estimating the effort required,
estimating the duration of the project and finally – the people
required. This paper gives an overview of the most powerful cost
estimation models, discusses their advantages and weakness and
finally a hybrid cost estimation approach that combines their
strengths is recommended

Keywords – Software Cost Estimation, Software Cost
Estimation Methods, Software Cost Estimation Tools.

I. INTRODUCTION

Software cost estimation [1-5] is a continuing activity
which starts at stage of the project proposal and continues
through the overall life time of the software project. The goal
of this continual cost estimation is to ensure that the expenses
will not exceed the budget provided.

Considerable research has focused on development and
evaluation of universal software cost estimation models and
tools suitable for all software projects. After 20 years
research, we could claim that there are many software cost
estimation methods available, but no one method is suitable
for all software projects. In fact, their strengths and
weaknesses are often complimentary to each other. To
understand their strengths and weaknesses is very important
for the software estimators. The estimators are increasingly
convinced that accurate software estimation is impossible
using a single method and increasingly believe that a
combination of methods will allow a more accurate and
reliable software cost estimate.

This paper gives an overview of COCOMO hierarchy and
Function Points cost estimation models, discusses their
advantages and disadvantages and finally a practical cost
estimation approach that combines their strengths is
recommended as a way for efficient cost estimation.

II. COCOMO MODELS AND FUNCTION POINT
ANALYSIS

A. COCOMO Family

One of the most commonly used software cost estimation
methods are the COnstructive COst MOdels (COCOMO
models). These methods for software estimation are
considered as algorithmic because provide mathematical

equations to perform software estimation. The COCOMO
mathematical equations are based on extensive historical
research and use inputs such as Source Lines of Code
(SLOC), number of functions to perform, and other cost
drivers such as language cost drivers, design methodology,
skill-levels, risk assessments, etc. As algorithmic methods the
COCOMO models have a lot of advantages. The most
important are the objectivity, stability and the sensitivity of
the results produced. Using such models the estimator gets
repeatable results. In the same time, it is easy to modify input
data, refine and customize formulas. The general disadvantage
of these models is the strongly dependence of the estimations
on the inputs. Some inputs can not be easily quantified. As a
result, poor sizing inputs or|and inaccurate cost driver rating
will result in inaccurate estimation

Basic COCOMO [1] is the first from the family COCOMO
models. It is designed by Barry W. Boehm as a model for
estimating effort, cost, and schedule for software projects in
1981. Now, a hierarchy of COCOMO models is available:

Basic COCOMO model computes software effort applied

“PM” (development effort i.e. development cost) in “person-
months” as a function of program size expressed in estimated
thousands lines of code KLOC. Person month is the amount of
time one person spends working on the software development
project for one month. This number is exclusive of holidays
and vacations but accounts the weekends. The basic Cocomo
equations are:

() []monthspersonKLOCaPM bb
b −=

() []monthsSchedExpPMcTDEF b=

[]peopleTDEF
PMStaffingAverage =

The coefficients ab, bb, cb and SchedExp depend of the type
of the project (organic, semi-detached or embedded) and are
given in the next table:
Software Project ab bb cb SchedExp
Organic 2.4 1.05 2.5 0.38
Semi-Detached 3.0 1.12 2.5 0.35
Embedded 3.6 1.20 2.5 0.32

1Violeta T. Bozhikova is with the Faculty of Computing and
Automation, Technical University of Varna, 9000 Varna, Bulgaria,
E-mail: vbojikova2000@yahoo.com

Basic COCOMO

Intermediate COCOMO

Advanced COCOMO

COCOMO II

659

TDEF is the Development Time in chronological months

and Average Staffing is the People required for the whole
project development This модел is good for quick, early and
rough estimates of software costs, but its accuracy is limited
because it doesn’t account the influence of a number of well
known factors such as hardware constraints, personnel quality
and experience and so on that have a significant influence on
software costs.

Intermediate COCOMO is an extension of the Basic
COCOMO. This model computes software developement
effort PM as a finction of program size and set of "cost
drivers" that include subjective assessements of 15 cost driver
attributes that are grouped into 4 major categories “Product
attributes”, “Hardware attributes”, “Personnel attributes”,
“Project attributes”. Each of the 15 attributes is rated on a 6-
point scale that ranges from "very low" to "extra high" (in
importance or value). Effort adjustment factor (EAF) for a
given project is calculated as the product of the fifteen effort
ratings (EMi, i=1…15). Typical values for EAF range from
0.9 to 1.4. The Intermediate Cocomo formula for PM now
takes the form:

() []monthspersonEAFKLOCEFPM ee −=
Where:

∏
=

=
15

1i
iEMEAF

Where the coefficient EF and the exponent ee are given in
the following table:

Software projec
t

E
F

e
e

Organic 3.
2

1.
05

Semi-detached 3.
0

1.
12

Embedded 2.
8

1.
20

The Development time (TDEF) and People required

(Average Staffing) are calculated from PM in the same way as
with Basic COCOMO.

Advanced COCOMO can be seen is an extension of the
Intermediate COCOMO version. It calculates PM the same
way as Intermediate COCOMO but with an assessment of the
cost driver's impact on each stage (analysis, design, etc.) of
the software engineering process.

The development of the new COCOMO II model by the
Boehm's team is based on a study of about sixty projects at
TRW (a Californian automotive and IT company) in 2002 and
is the latest major extension to the original COCOMO. This
model is turned to the newer software paradigms (for example
OOP) and the modern software life cycles. For comparison,
the previous COCOMO models have been very successful for
projects up to 100000 lines of code, based mostly on the
waterfall model of software development and for
programming languages ranging from assembly to PL/I. In
addition, the previous COCOMO versions were defined in
terms of estimated lines of code LOC (and thousands of LOC,
i.e. KLOC). The COCOMO II model bases the calculation of

required effort PM on the software project's size measured in
SLOC (and thousands of SLOC, i.e. KSLOC). The difference
between LOC and SLOC (single Source Line of Code) is that
a SLOC may include several physical lines. Each structured
construction, for example the "if-then-else" statement would
be counted as one SLOC. For comparison, in basic COCOMO
model this statement might be counted as several LOC.

The first equation below (PMnom) is the base model for the
Early Design and Post-Architecture cost estimation of the
software project. The inputs are the Size of software
development in KSLOC, a constant A and a scale factor – B
[3]. The size is in KLOCS is derived from estimating the size
of software modules that will constitute the application
program. It can also be estimated from unadjusted function
points (UFP), converted to SLOC then divided by one
thousand. The scale (or exponential) factor B derived from
five scale drivers, such as Team Cohesiveness factor, Process
maturity factor, Precedentness, Flexibility and Breakage
factor and accounts for the relative economies or
diseconomies of scale encountered for software projects of
different sizes [3]. The constant A depends on the size of the
project. The nominal effort PMnom and the adjusted effort
PMadjasted calculations for a given size project and expressed as
person months are presented by the next equations:

() []monthspersonKLOCAPM B
nom −=

() []monthspersonEAFPMPM nomadjasted −=
Where:

∏
=

=
17

1i
iEMEAF

COCOMO II has 17 cost drivers attributes (Analyst
Capability, Applications Experience, Programmer Capability,
Use of Software Tools, Multisite Development, Required
Development Schedule, Required Software Reliability,
Database size, Product complexity, Personnel Experience,
Language and Tool Experience, Personnel Continuity,
Execution Time Constraint, Main Storage Constraint,
Platform Volatility, Required Reusability, Documentation
match to life-cycle needs) which rating (expressed as a
number EMi, i=1…17) the estimator has to determine with
the goal to calculate the value of effort required EAF .

B.Function Point Analysis

Although counting lines of code is the first and most
common software sizing methodology this sizing method is
no longer practical due to the great advancements in software
engineering and modern programming languages. Another
commonly used sizing method is the IFPUG method [5] called
Function Point Analysis (FPA). It is another method of
quantifying the size in terms of the functions that the system
delivers to the user. The function point measurement method
was developed by A. Albrecht at IBM in 1979. The main
advantages of function point analysis based model are:

- function points (FP) can be estimated from requirements
specifications or design specifications, so using FPA it
possible to estimate development cost in the early phases of
development.

660

- function points are independent of the programming
language or the methodologies used for software
implementation.

- since function points are based on the system user's
external view of the system the non-qualified users have a
better understanding of what function points are measuring

Different variations of Function Points have emerged over
the years, such as Object Oriented Function Points, Use Case
Function Points and so on. Function point estimation approach
is widely used within COCOMO II because COCOMO II is
oriented to the newer software paradigms and to the modern
software life cycles.

III. A HYBRID SOFTWARE COST ESTIMATION
APPROACH

Our approach is a combination between almost all
COCOMO models: Basic COCOMO, Intermediate
COCOMO, and COCOMO II with Function Point Estimation
features. The raison to develop such hybrid approach
collecting all these mentioned above methods is to give the
estimators an opportunity for a suitable choice of cost
estimation model, depending of the concrete project type and
the specific and often incomplete initial knowledge about the
software product in the early stages of its development.

The two basic steps, required to accomplish software
estimation are:

- Estimate product size,
- Estimate effort applied, project’s duration and resources

needed.

A. Estimate product size

Our approach bases the calculation of required effort PM on
the software project's size measured in COCOMO II SLOC
(and thousands of SLOC, i.e. KSLOC). The calculation of
SLOC (KSLOC) may be based on the expert’s estimation of
the size of software project (if is possible to make such
estimate) or on FP estimation. The usual Function point’s
estimation procedure is based on information that is available
early in the project life cycle. It begins with determining and
classifying (by complexity level) the user functions as Inputs,
Outputs, Files, Interfaces, and Queries (figure 1.). As a result,
the Unadjusted Function Points (ФТ) quantity is calculated
(figure 1). Next a Translation of Unadjusted Function Points
(ФТ) into SLOC is realized. The unadjusted function points
are converted into equivalent SLOC depending of a
LangFactor of the language used. For example, the
LangFactor [3] for Assembly language is 320SLOC/UFP, for
C++ - 29SLOC/UFP, for Fortran 77 – 105SLOC/UFP, for
Lisp – 64SLOC/UFP, for Pascal – 91 SLOC/UFP and so on.

The usual Function Point procedure accounts the degree of

influence DI (2) of fourteen application characteristics (figure
2), such as distributed functions, performance, reusability, etc.
The ratings of these 14 characteristics (rating scale of 0.0 to
0.05 for each characteristic) are added together, and added to

a base level of 0.65 to produce a general characteristics
adjustment factor that ranges from 0.65 to 1.35.

)2(

14

1
∑= iratingDI

Our approach has respected this described above usual

Function Point procedure to calculate the size of the project.
The final equation that is used for cost estimates is shown
below:

()())3(01.065.0 LangFactorDIФТSLOC ××+×=

Fig. 1. FP calculation

B. Estimate effort applied, project’s duration and resources
needed

The general equation that we have used to calculate the
effort needed (PM) for a given size project development,
expressed as person months is given below:

Where:

⎩
⎨
⎧ =

=
.

;1
caclulatedisFactorAdjasmentEffortifPM

EAFifPM
PM

real

nom

If the effort adjustment factor EAF is 1 (it is its default

value) PM is interpreted as the nominal effort PMnom needed
for a given size project development, expressed as person
months. The values of the coefficient EF and the exponent ee
in this case are based on Intermediate COCOMO model.

The calculation of the effort adjustment factor EAF (5) is
related with the calculation of the adjusted effort PMreal. EAF
estimation could be based on the fifteen COCOMO
Intermediate cost drivers or on the seventeen COCOMO II
Cost Drivers plus one. Total of eighteen Cost Drivers in the
latter case are grouped into 3 major categories “Personnel
attributes”, “Project attributes” and “Product attributes”. An
additional user defined cost driver, named USER is added to
the classic COCOMO II Cost Drivers. It gives estimators an
opportunity to recognize the impact of a chosen project-
specific factor, other than the provided in COCOMO II.

EAF for a given project is calculated as the product of the
effort ratings of these attributes.

)1(LangFactorФТSLOC ×=

)5(
1
∏=
CDN

iEMEAF

)4(][monthspersonKSLOCEAFEFPM ee −××=

661

Where,

⎩
⎨
⎧

=
.15

;18
usedisCOCOMOteIntermediaCOCOMOif

usedisIICOCOMOif
CDN

Fig. 2. Application characteristics and DI calculation

The calculation of the duration TDEF of the project is based
on the effort predicted by the effort equation:

Where:
PM is the effort (nominal or real) that is calculated,

SchedExp is the schedule exponent derived from Basic
COCOMO model and EF is a coefficient derived from
Intermediate COCOMO model.

The average staffing is calculated as follows:

IV. CONCLUSION

This paper gives a comparative overview of COCOMO and
FPA models, discussing their advantages and disadvantages
and proposes a hybrid cost estimation approach that combines
their strengths. Our observation is that an approach that
collects all these mentioned above methods gives the
estimators an opportunity to choose the appropriate estimating
method in a situation of often incomplete specifications and
unclear requirements in the early stages of the project life
cycle.

An interactive and flexible tool (figure 3) that implements
the software estimation approach, discussed above, was
developed. Depending on the specific characteristics of the
project, the estimator can choose the appropriate sizing metric
and method of cost estimation. The experiments prove that is
not reasonable to use SLOC as sizing metric, but it is not also
reasonable to use Function points as sizing metric for low
level language projects estimation or for legacy system’s
estimation. Although the results are encouraging and match
expectations for the tested projects, research must continue in
the direction of evaluating large and complex projects.

Fig. 2. A tool for Software Cost Estimation (the main window)

REFERENCES

[1] B.W. Boehm et al, "The COCOMO 2.0 Software Cost
Estimation Model", American Programmer, 1996, pp.2-17.

[2] Boehm, B.W. "Software Engineering Economics",
Prentice_Hall, 1981.

[3] COCOMO II Model Definition Manual,
ftp://ftp.usc.edu/pub/soft_engineering/COCOMOII/cocomo97do
cs/modelman.pdf.

[4] Karen Lum et al. "Handbook for Software Cost Estimation", Jet
Propulsion Laboratory, Pasadena, California, 2003.

[5] Liming Wu, "The Comparison of the Software Cost Estimating
Methods", ttp://www.compapp.dcu.ie/~renaat/ca421/LWu1.html

)6(][)(monthsPMEFTDEV SchedExp×=

)7(][peoplePM
TDEVStaffingAverage =

662

