

Asynchronous Micro-Pipeline
With Multi-Stage Sections

Dimitar S. Tyanev1, Stefka I. Popova2
Abstract: The interface of multi-stage micro-pipeline sections
building continuous micro-pipelines is defined and analyzed. As
the multi-stage micro-pipeline sections have own memory, such
micro-pipelines don’t need additional registers. In these
conditions there is pipeline asynchronous protocol and
implementing control unit synthesized. The protocol’s operation
is shown in cases, arising from combined work of neighbor multi-
stage micro-pipeline sections. Possible problems of combining
one- and multi-stage sections are indicated.
Keywords: Computational devices, Micro-pipeline, Race

conditions, Synchronization.

I. INTRODUCTION
 Micro-pipelines contain consecutively connected micro-
pipeline sections which structure is made of register and logic
(for example [6÷18] or another). The register supports the
data and the logic implements the necessary computations, but
it is not required. If the delays describing the particular
sections are relatively the same, there is common control and
the micro-pipeline is defined as synchronous. If the delays are
significantly different, the control is distributed and the micro-
pipeline is determined as asynchronous. After every
registration impulse new data enters and is processed at
certain section in the both types of micro-pipelines. So after
each impulse the intermediate results are moving from section
to section. In these terms the micro-pipeline sections in such
kind of pipelines are defined as one-stage. The stage period at
particular sections is set by the switching time of the logic.
 Data shifting from section to section in asynchronous
micro-pipelines of mentioned type is implemented after the
hand-shake principle, in 2-phase or 4-phase protocol. The
protocol is realized by control block, containing some version
of well-known Mueller C-element [5÷18]. The nature of
control is asynchronous because the shifting of current results
to the next section is possible only if the last is not busy. This
is the main reason such type of micro-pipelines to be defined
as asynchronous.
 Micro-pipeline sections with internal feedback are
presented in [1÷4]. These sections implement iterative
computations and are designed as synchronous devices. They
work as synchronous because of local clock. Such micro-

pipeline sections can be determined as multi-stage on account
of the internal (local) clock. The delays generated from these
sections are significantly different amongst themselves, as
well as compared to the delays from one-stage sections, so as
devices they can be included only in asynchronous micro-
pipelines. As the multi-stage micro-pipeline sections have
their own memory, the micro-pipelines with such sections
don’t need additional pipeline registers. This paper presents
the interface of this kind of multi-stage micro-pipeline
sections and the control possibility with serial inclusion.

II. MULTI-STAGE MICRO-PIPELINE SECTION
 Micro-pipeline sections with internal feedback can be
presented by the following general structure:

DataIn
O

pe
ra

tio
n

Lo
gi

c
DataOutRegister

File

Local
Clock

Control
CS

CSSS

SS

Figure 1 Structure of multi-stage micro-pipeline section

 The structure contains three basic elements – register file
(Register File), which consists of one or more registers
(pipeline fixers) and set of combinatorial logic (Operation
Logic) implementing necessary computations. The main
characteristic of this structure is the internal feedback. The
third element (Control) is integral part of such sections and
realizes their internal control. Some of the tasks of the internal
control will be discussed in this paper. The most important
function of the internal control is to carry out the
communication between sections and to process and generate
the respective signals (Status Signals, Control Signals).
 Multi-stage micro-pipeline sections are intended to
implement various types of cyclic algorithmic structures. The
iterative computations carried by such sections lead to long
detention of the main computational process, which allows
them to be defined as very asynchronous regarding to it.
 Micro-pipeline sections of presented type can be stable in
one of the next three states:

1. “Free” state. It means that the result of computations
in the current section k is sent through the output bus DataOut
to the next section k+1 and the last confirm the reception. In
this state the logic connections in the structure are determined
so the section is ready for the next start. In these terms, the

1Dimitar S. Tyanev is with the Faculty of Computer Sciences and
Technologies, Technical University of Varna, Bulgaria.

e-mail: dstyanev@yahoo.com
2Stefka I. Popova is with the Faculty of Computer Sciences and

Technologies, Technical University of Varna, Bulgaria.
e-mail: s_ivanova@abv.bg

675

state “Free” is the information necessary to section k-1,
because there is no sense to be started if the next is not free;

2. “Busy” state. Current section k is in this state during
the implemented cyclic computations. At this time the input
data bus DataIn is switched off and the data on it does not
have any impact on its structure. The data on its output bus
DataOut is not valid so it shouldn’t be accepted and used by
the next section;

3. “Ready” state. It is alternative to the previous state. It
occurs in the current section k when its computations finish
and the true value of the result are set on the output bus
DataOut. In this state the section supports the obtained result
on the output bus so it is still only there.
Note: All micro-pipeline sections in certain micro-pipeline

should be forced to “Free” state after the power
switching, as well as in other situations that require
this state. The last is defined as initial or last state for
the particular section and for the pipeline in general.

 At the time of the pipeline operation the order of the
states in each section is as follows:

... “Free”, “Busy”, “Ready”, “Free”, “Busy”, “Ready”, ...

States in which every section of the micro-pipeline could be
are declared by the following signals (signals of SS type):

1. Signal kF (Free). It is produced after switching of the
section in “Free” state. This signal is conditionally directed to
the back, i.e. to the previous section k-1;

2. Signal kB (Busy). It is produced after switching of the
section in “Busy” state. The signal is directed to the back as
well;

3. Signal kR (Ready). This signal is produced after
switching of the section in “Ready” state. It is conditionally
directed to the front, i.e. to the next section k+1.

III. CONSECUTIVE INCLUSION OF MULTI-
STAGE MICRO-PIPELINE SECTIONS

 Multi-stage micro-pipeline sections are included in exact
sequence according on the current algorithm. In order to the
pipeline organization there is certain control required,
depending on the signals SS and CS. The control of the
connection between each pair neighbor sections is assigned to
control automation (CA) which must recognize the states of
the both sections and to manage their dialogue. In other
words, this automation has to synchronize the common work
of two neighbor sections using signals of SS type and in
response to produce the necessary CS-signals (Figure 1). In
conformity with Section 1, the pipeline automation should be
asynchronous. Figure 2 presents pipeline from the discussed
type.
 As it seen from the figure, the control automation CA
generates two control signals:

M
PS

 k
-1

CA

Rk-1

Data Bus

Ak-1

Fk

Gk

Bk CA

Rk

Data Bus

Ak

Fk+1

Gk+1

Bk+1

M
PS

 k

M
PS

 k+
2

CA

Rk+1

Data Bus

Ak+1

Fk+2

Gk+2

Bk+2

M
PS

 k+
1

Figure 2 Micro-pipeline with multi-stage sections

1. Signal 1+kG (Go). With this signal the automation
starts computations into the next micro-pipeline section, i.e.
the signal is directed to the front. The emission of this signal
must be possible only if the previous section is in “Ready”
state and next – in “Free” state. This is situation in which the
previous section finished its computations and supports the
results on the output bus. At the same time the next section is
free and waits for new data;

2. Signal kA (Acknowledgement). With this signal the
automation informs the previous section that transferred data
is successfully received by the next one. The signal is condi-
tionally directed to the back. The previous section must
announce “Free” state in response. The logic of such state is
presented as:

.ARF kkk 1+∩= (3.1)

 The control automation’s operation is showed by the graph
at Figure 3. The graph shows that the automation has two
states. The initial state is marked as S0. In this state the
automation supports the signal kA which is a reason for the
“Free” state of section k. From this state automation is swit-

ched to state S1 only when the two neighbor sections
complete the required transition condition:

TrueFR kk =∩ +1 . Once automation is in S1 state it

produces the signal 1+kG . This signal appears to be initial for
the next section k+1.

S0 S1
Gk+1

(Rk ∩ Fk+1)

Bk+1

Ak
Bk+1

(Rk∩Fk+1) ∪

∪ (Rk∩Fk+1) ∪

∪ (Rk∩Fk+1)

Reset

Figure 3 Transition graph in CA

 After section k+1 begin its operation, it passes to “Busy”
state and forms signal 1+kB . This signal causes the switching
of the synchronizing automation back to the initial state S0.
From this state is produced signal kA which informs the
previous section about the successful transfer of its data to the
next section. It is the end of the exchange session at this stage
of the micro-pipeline.

676

 The synthesis of the pipeline automation in terms of the
transition graph from Figure 3 leads to the principal logic
structure presented at Figure 4 in two variants:

Ak

&

SL RL

TL

Rk

Fk+1

Bk+1

Gok+1

1

Reset

&

SL RL

Rk

Fk+1

Bk+1
1

Reset

& &

Ak Gok+1

Figure 4 Principal structure of CA

 The automation is implemented following Moore’s
structure by one asynchronous RS-Latch flip-flop. Internal
states of the automation are coded as follows:

.QS1,QS0 == (3.2)
So the right input implements signal Go and the inverse input
– signal Acknowledgement.
 Because of the different duration of the computations in
two neighbor sections there are two possible situations for the
control automation, for example:

1. Section k+1 is free and waits for the end of section
k’s computations;

2. Conversely, the section k is ready and waits for the
end of computations in section k+1.

 The time-diagram from Figure 5 shows these two cases of
the pipeline automation switching. In the first situation (the
left half) section k+1 waits for the data from section k. The
automation is in S0 state, waiting for signal kR .
 In the second case (the right half) section k+1 still works
while the previous section k finish computations and is in
“Ready” state at the same time, producing signal kR . With
this signal the automation is switched to S1 state from the S0
state.
 The transitional process corresponding to automation’s
graph is presented twice – into the left and into the right side
of the time-diagram at Figure 5 and shows the beginning,
work, final and repeated start of the micro-pipeline section
k+1. Analyzing this time-diagram can be concluded that the
control automation implements 4-phase protocol.

Rk

Fk+1

A k

Bk+1

G k+1

R∩F

S(t) S0 S1 S0 S0 S1 S0

W orking (k+1)

1

2

Figure 5 Switching of the synchronization automation

IV. SYNCHRONIZER
 For starting the computational process in multi-stage
micro-pipeline sections [1], [2], [3], [4] is required start
impulse, conditionally called Enable which must be
synchronous with the rising edge of the local clock impulses
and to have duration up to one period. From discussion in
Section 3 is clear that the parent of the start signal will be the
asynchronous control automation which generates signal Go.
This signal is asynchronous regarding to the local clock
impulses. Thus, there is a task for the signal Go converting
into signal Enable.
 The task of converting asynchronous signal into
synchronous is illustrated by the time-diagram at Figure 6:

C lo ck

E n ab le

G o

B u sy
Figure 6 Time-diagram of synchronization

 Can be seen that the signal Go appears asynchronously in
the time of clock impulse from the Clock sequence. The start
impulse Enable to micro-pipeline section follows as response.
With appearance of the Busy signal disappear the signals Go,
which is function of the pipeline automation, and Enable,
which should be function of the synchronization schema.
Signal Busy characterizes the state of the micro-pipeline
section, as it was described in Section 2.
 The schema, which implements expressed logic, is
presented at the following figure:

 A)

C
 D

C

lr

TE
Clock

Go

Busy

Enable

 B)

C

D

C
lr

TE
Clock

Go

Busy

Enable

&

Figure 7 Principal structure of the synchronizer

 There is dynamic D flip-flop with Edge structure used,
which is basic approach for synchronization of asynchronous
signals [15, 19, 20, 21, 22]. Fixing of the signal Go’s logic
value is made with the rising edge of the clock impulse. If it is
missed, as it shown at Figure 6, it could be done with the next

677

impulse. For reliable fixing there must be restriction on the
initial asynchronous value. This value should be kept in time
during the following period:

,1tTtGo +≥ (4.1)

where Got is the duration of the signal Go;
 T is the period of signal Clock;
 1t is the duration of single impulse into signal Clock.
 If the signal Go has significantly bigger duration, in the
name of the necessary duration of Enable signal is used forced
cleaning of the flip-flop by the Clr (Clear) input. Notice that
this input is with high priority and if the signal Busy is
connected to it (Busy is active through all computational
cycle), the forced keeping of the flip-flop in zero state is
guarantee for reliability and makes impossible false values of
the signal Enable.
 There are two options for the synchronizations schema
(look Figure 7). The variant A synchronizes by the rising and
by the falling edge; the variant B synchronizes only by the
rising edge. In the last variant, because the Enable signal is
function of the input signal Go, it is the direct reason for its
disappearance. The synchronizer should be assumed as part of
the logic of every multi-stage micro-pipeline section.

V. CONCLUSION
 Discussed in this paper type of micro-pipeline sections
and their serial inclusion in certain micro-pipeline is only one
special case. As it was told in the beginning, there are
different types of possible micro-pipeline sections. It is
possible their serial inclusion in various combinations, for
example: one-stage section followed by multi-stage section or
multi-stage section, followed by one-stage. If we consider
longer sequence, the possible combinations will be more. The
only one known case, which was mentioned in the
introduction, corresponds to sequence of one-stage micro-
pipeline sections, where the control automation is based on
Mueller C-element.
 While one-stage sections are served only by two signals,
usually called Request and Acknowledgment, for the multi-
stage sections is defined a few possible signals. However,
knowing the structure of the multi-stage sections we can claim
that there are preconditions for other interpretations, as well as
for possibilities for generalization. Admitting the mentioned
combinations of serial arrangement, it will lead to necessity of
different kinds of control automation. Of course, these
possibilities are topic of future work.

REFERENCES
[1]. Тянев, Д., Колев, С., Янев, Д., Метод за реализация на

апаратни самоуправляващи се циклически структури -
част II, “Компютърни науки и технологии”, ТУ-Варна,
ISSN 1312-3335, година V, брой №2/2007, стр. 23-30.

[2]. D. Tyanev, S. Kolev, D. Yanev, Micro-pipeline Section
For Condition-Controlled Loop, CompSysTech’09, 18-19
June 2009, Ruse, Bulgaria.

[3]. D. Tyanev, D. Yanev, S. Kolev, Method for realization of
self-controlling loop apparatus structures, Fifth ISCCS’09,
5-6 November 2009, Sofia, Bulgaria.

[4]. Тянев, Д. С., Колев, С. И., Йосифов, В., Метод за
реализация на апаратни самоуправляващи се
циклически структури, ТУ-Варна, ЮC “45 години ТУ-
Варна”, 2007, ISSN 1311-896X, стр. 130-135.

[5]. Миллер, Реймонд Е., Теория переключательных
схем, том 2 – последовательностные схемы и машины,
Москва, Издательство “Наука”, 1971.

[6]. Sutherland, Ivan E., Micropipelines.
[7]. Tiberiu Chelcea, Girish Venkataramani, Seth C.

Goldstein, SelfResetting Latches for Asynchronous
MicroPipelines, Proceedings of the 44th annual
ACM/IEEE Design Automation Conference, June 2007.

[8]. Mannakkara, C., Yoneda, T., Asynchronous pipeline
controller based on early acknowledgement protocol,
National Institute of Informatics: DI, Graduate University
for AS, Tokyo, Japan, NII-2009-015E, Sept. 2009.

[9]. GALAXY-Project, Milos Krstic, , Specification of
optimized GALS interfaces and application scenarios,
GALAXY, 12-2008.

[10]. Jens Muttersbach, Globally asynchronous locally
synchronous, architecture for VLSI Systems, PhD thesis
[PDF], ETH Zurich, Diss. ETH №14155, 2001.

[11]. Milos Krstic, Eckhard Grass, New GALS Technique
for Datapath Architectures, in Integrated circuit and

system design: power and timing modeling, by Jorge Juan
Chico, Enrico Macii, p.161, books.google.com, 2003;
Lecture Notes in Computer Science, ISSN 0302-9743,
Volume 2799/2003.

[12]. Eckhard Grass, Frank Winkler, Miloš Krsti,
Enhanced GALS Techniques for Datapath. Applications.

[13]. Xin Fan, Miloš Krstić, Eckhard Grass, Analysis and
Optimization of Pausible Clocking based GALS Design.

[14]. Kenneth Yun, Peter A. Beerely, Julio Arceo, High-
Performance Asynchronous Pipeline Circuits, In Proc.
International Symposium on Advanced Research in
Asynchronous Circuits and Systems, IEEE Computer
Society Press, 1996.

[15]. Ran Ginosar, Fourteen ways to fool your synchronizer -
Asynchronous Circuits, IEEE Pr. of the 9th ASYNC’03.

[16]. Stefan Hirschmann, Asynchronous processors,
Seminar Embedded System Design, Institute of Computer
Science, University of Innsbruck, February 25, 2008.

[17]. Chang-Jiu Chen, Wei-Min Cheng, Hung-Yue Tsai, Jen-
Chieh Wu, A quasi-delay-insensitive microprocessor core
Implementation for Microcontrollers, Journal of
information science and engineering 25, 543-557 2009.

[18]. Montek Singh, Chapel Hill, Steven M. Nowick, US
Patent, 2005/0156633, Circuits and methods for high-
capacity asynchronous pipeline processing.

[19]. Ronald J. Tocci, Neal S. Widmer, Digital systems:
principles and applications, 8th ed., Prentice-Hall Inc.,
ISBN 0-13-085634-7, 2001.

[20]. Pong P. Chu, RTL Hardware Design Using VHDL:
Coding for Eflciency, Portability and Scahbility, Wiley
IEEE Press, ISBN-13: 978-0-471-72092-8, 2006.

[21]. Daniel Page, Practical Introduction to Computer
Architecture, Springer, ISBN 978-1-84882-255-9, 2009.

[22]. Richard F. Tinder, Asynchronous Sequential Machine
Design and Analysis, Morgan and Claypool, ISBN:
9781598296907, 2009.

678

