

Programming Environment for Management of
Parallel Jobs with Concurrent Access to a Common

Data Source
Ivaylo Penev1

Abstract – The paper presents a strategy and a programming
environment for effective realization of parallel jobs with
concurrent access to a common data source. Each job is started
on a separate workstation in a local computer network. In order
to avoid the conflicts, caused by the simultaneous access to the
data source and to achieve better performance time, an approach
with delay start of the jobs is proposed.

Keywords – Parallel jobs, Concurrent jobs, Simulation
problems.

I. INTRODUCTION

In the area of banking information systems a class of
problems, associated with simulation of many financial
portfolios exists. In general each problem passes through
reading data about portfolios from a data source (for example
database), executing simulation calculations according to the
performed analyses, and storing results in the same data
source. The calculating procedures about each portfolio are
completely independent each other. The whole simulation
process is divided to jobs, each one simulating a separate
portfolio. Prerequisites about realizations of such a class of
problems in parallel computing environments exist. The
efficiency of the realizations is significantly decreased due to
the concurrent access of many parallel jobs to the common
resource. The current work presents a strategy for preventing
the concurrent access by proper shifting of jobs along the time
axis of execution. The strategy is practically realized within a
programming environment for management of the parallel
jobs.

II. REALIZATION OF A PORTFOLIO MANAGEMENT
SYSTEM IN A DISTRIBUTED COMPUTING

ENVIRONMENT

The researches, presented in the current work, are based on
the realization of a Portfolio management system (PMS) in a
distributed computing environment [2]. The system simulates
financial portfolios, calculating their positions. Information

about each portfolio is stored in a database. When simulation
about a specific portfolio is started, relevant data from the
database are retrieved and suitable calculations are performed.
The simulation finishes with storing report data in the
database. Because of the great number of portfolios, positions
and the various analyses performed, the simulation is heavy
calculating process, taking long time to be finished on a single
computer. Therefore the PMS executable is started on
multiple connected computers, each of them performing
simulation of a separate portfolio and saving the results in the
database.

For managing the environment of computers (calculating
resources, nodes) the system Condor is used, developed and
spread for free by the University of Wisconsin-Madison, USA
[3]. The distributed environment consists of a pool of
computers and a server for database management (Oracle
server), storing data about financial portfolios.

Each job has a description (in a submit description file)
matching a portfolio simulation with a computer from the
pool.

An execution of four jobs in series by a single computer
and in parallel by the presented environment is tested. The
time results differ from the expected. The increase of the
count of the computers, participating in the simulation,
decreases the parallel execution efficiency. The database
management server is unable to process lots of simultaneous
queries. Therefore, the concurrent access of the jobs to the
common resource is a strong limiting condition over the
execution time of the whole process. Applying a strategy for
avoiding this limitation is necessary.

III. STRATEGY FOR MINIMIZING THE CONCURRENT
ACCESS OF PARALLEL JOBS TO A COMMON DATA

SOURCE

Each job could be decomposed to the following stages

(simulation steps):
- Reading data about the positions of a financial

portfolio from the database;
- Executing calculations over the data to perform

analyses;
- Storing results from the simulation into the database;
The time of each job’s stage is known in advance,

according to the performed analyses.

1Ivaylo P. Penev is with the Faculty of Computer Science and
Engineering, Technical University of Varna, 9000 Varna, Bulgaria,
E-mail: ivailopenev@yahoo.com

685

The stages of reading and storing data from/into the
database take time, which is significantly less than the time,
necessary for performing calculations.

These observations give reason to apply a strategy, which
introduces shifting of the jobs on the time axis. The aim is
avoiding the recovering of the stages of different jobs,
accessing the common resource simultaneously.

A. Formal description

The strategy is formalized by the help of theory of sets [1].
A set of simulation jobs is defined:

{ }njobjobjobJOBS ,...,, 21= (1)

Each job has time for reading data READτ , time for

calculations EXECUTEτ and time for storing data STOREτ . The

times READτ , EXECUTEτ , STOREτ are known in advance.
The execution of the whole process, including all the

simulation jobs along the time axis is decomposed to a set of
time intervals:

{ }ktttTIMES ,...,, 21= (2)

The stages, through which the execution of a job passes
through, define a set of possible states, taken by the job in a
time interval:

{ }StoreExecuteadSTATES ,,Re= (3)

The process of the execution of all jobs is described by a
relation of the Cartesian product of the upper sets:

{ }lji sjtocessEntire ,,Pr = , where:

STATESsJOBSjTIMESt lji ∈∈∈ ,, .

When the jobs are performed in series, the total execution
time of the whole process is given as a sum of the execution
times of each job’s stages:

∑
=

=∑

k

i
itt

1

In the case of parallel performance the total time is
theoretically equal to the maximum execution time of a
parallel job:

)max(∑=∑ ktt , where kt are all time intervals,

during which a job from the set JOBS is performed.
The practical increase of ∑t is caused by those time

intervals, in which different jobs are set at adRe or Store
state at the same time. These intervals form a subset of the

ocessEntirePr set.

ocessEntirebsConflictJo Pr⊂

⎭
⎬
⎫

⎩
⎨
⎧

= lkilji sjtsjtbsConflictJo ,,,,, (4)

, where

))Re(Storesadskj ll =∨=∧≠

it - A time interval of the whole simulation process

execution (TIMESti ∈)

jj , kj - Jobs, executed in the it interval

(JOBSjj kj ∈,)

ls - State of the jobs jj , kj in the interval, which is

adRe or Store (STATESsl ∈)
The total time of the simulation process for the case of

parallel execution is in inverse proportion to the count of the
elements of the (4) set, i.e. to the set power:

)(bsConflictJoft →∑ , where bsConflictJo -

power of the set.
The elements of the (4) set present those time intervals, in

which different jobs are situated at the same state of access to
the common resource at the current time interval. The
following strategy is applied to decrease the number of these
elements.

A complementary state WAIT is added to the STATES
set:

{ }StoreExecuteadWaitSTATES ,,Re,=

This state is added as an initial state at the beginning of
each job, accessing the common resource. The job remains in
this state until the other jobs occupy the adRe state. After
the common resource is released, the waiting job moves to
the adRe state. The job start is shifted along the time axis
until the release of the data source.

As a result the bsConflictJo set is shrunk in contrast to
the ocessEntire Pr set, which is expanded with new
elements. The results derive from the simulation process
analysis, which shows that the concurrent access to the
common resource is the strongest limiting condition over the
efficiency of the whole simulation process.

B. Algorithm for realization of the proposed strategy

The strategy is realized using the following iterative

algorithm for the execution of a simulation process, consisted
of n parallel jobs:
1. Reading the execution times of the stages of each job.
2. Simulating a scenario with shifting the current

job nii ≤≤1, :

686

2.1. Reading the times STOREEXECUTEREAD τττ ,, for

job iknkk ≠≤≤ ,1, .

2.2. Introducing delay time kREADWAITi ττ = for the job
.i

2.3. Counting the intervals, in which the jobs access the
common resource concurrently after delaying the
job .i

2.4. Reading times for the next job k , transition to 2.1.
3. Simulating a scenario with shifting the next job i ,

transition to 2.
4. Final evaluation – estimating the scenario with minimum

recovering of the common resource access.

IV. PROGRAMMING ENVIRONMENT, REALIZING THE
PROPOSED STRATEGY

The described strategy is presented by a programming

environment for managing the execution of parallel jobs,
accessing common data source.

The environment has two main parts:
- Visualizing the parallel execution of jobs, the

recovering of states, the scenarios with shifting of jobs;
- Creating a description for each job for starting in the

distributed computing environment (submit description
file);

A. Part for visualization of the parallel jobs

This part performs the following main functions:
- Showing the times for each state of all jobs;
- Visualizing the parallel execution of the jobs by the

help of diagrams;
- Showing the recovering of states of parallel jobs during

the process of execution;
The times for the states of each job, participating in the

simulation process, are defined in a data base. The parallel
execution is visualized by diagrams, showing the development
of the jobs by states. Furthermore, the whole simulation
process time is divided to intervals. The state of each job in a
time interval is specified, according to the known times for
each job’s states. The time intervals, in which different jobs
occupy the data source simultaneously, are marked. These
intervals are the limiting condition over the parallel execution
efficiency (the elements of the set (4) from the formal
description of the strategy).

By the help of the proposed interface scenarios with
shifting of jobs are visualized. At the initial state the parallel
jobs recover at the state of reading data from the data base
(Fig. 1).

The described algorithm is applied. Scenarios with time

shifts for each job are generated. The example presents
managing of two parallel jobs.

The first job is shifted with two time intervals, until the
second one finishes reading data and releases the common

resource. The recovering of states shows, that after shifting of
the first job, the parallel jobs become concurrent to the data
source at the states of storing data. This means that the
scenario would be ineffective for the whole simulation
process and such ordering of jobs is improper (Fig. 2).

In the next scenario the second job is shifted with two
intervals, until the first one ends reading data and releases the
resource. The recovering of states shows, that the shift of the
second job in relation to the first one prevents the concurrent
access to the common data source. Although the maximal
total time is greater than the same time in the previous
scenario, this case is expected to avoid the limiting condition
over the simulation efficiency. This should be the order of
starting of the parallel execution in the distributed computing
environment (Fig. 3).

Fig. 1. Position of the jobs at the initial state

Fig. 2. Variant of job shifting

687

B. Creating a description for each job for starting in the
distributed computing environment (submit description file)

Each job must have a description to be started in the

distributed environment. The description is stored in a file,
called submit description file, which is created by the
presented programming environment.

The file matches a computer from the pool with a portfolio
from the database. The computer, which host name is
specified in the description file, calculates the portfolio and
stores the results into the database.

The description file has specified format, which includes
information about the simulation execution and the work of
the pool:

- Name of the executable, sent to the computers in the
environment;

- Arguments – name of the portfolio to be calculated in
background mode;

- Requirements – host name of the computer from the
pool to calculate the portfolio;

V. CONCLUSIONS AND FUTURE WORK

Up to the current moment the presented strategy is in a
process of development. The environment simulates small
number of jobs. The purpose is building an effective model
for researching the real execution of many parallel jobs with
concurrent access to the common resource.

The formal description of the strategy will be complicated.
After a job finishes, the computing resource is free for next
job. Further analysis about the state of the other jobs is
required. Complementary criteria will be defined, estimating
the current results from the strategy appliance.

ACKNOWLEDGEMENT

The work presented in this paper was partially supported
within the project BG 051PO001-3.3.04/13 of the HR
Development OP of the European Social Fund 2007-2013.

REFERENCES

[1] L. Lovasz, K. Vesztergombi, “Discrete Mathematics”, Lecture
Notes, Yale University, 1999.

[2] I. Penev, A. Antonov, "Realization of Portfolio Management
System in a Distributed Computing Environment",

International Scientific Conference Computer Science,
Conference Proceedings, under print, Sofia, Bulgaria, 2009.

[3] http://cs.wisc.edu/condor/.

Fig. 3. Next variant of job shifting

688

